CocoRoF commited on
Commit
badfcff
·
verified ·
1 Parent(s): dbee978

x2bee/KoModernBERT_SBERT_compare_mlmlv5

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": true,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
2_Dense/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47f06bfc7c718988a4e54cdadfc958038eeb065cfc638e5b8d12a8b67c9bc989
3
+ size 2362528
README.md ADDED
@@ -0,0 +1,473 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:550152
8
+ - loss:CosineSimilarityLoss
9
+ base_model: x2bee/KoModernBERT-base-mlm_v02
10
+ widget:
11
+ - source_sentence: 한 남자가 다리가 허벅지에 있고 자전거 헬멧이 두 개 뒤에 있는 여자 옆에 앉아 있다.
12
+ sentences:
13
+ - 그 어린 소년은 야외에서 장난감 비행기를 날리고 있었다.
14
+ - 사람들은 더 잘 보기 위해 서 있다.
15
+ - 남자가 여자의 허벅지에 다리를 얹고 있다.
16
+ - source_sentence: 도끼로 구조물을 무너뜨리는 남자.
17
+ sentences:
18
+ - 소년이 당나귀를 타고 있다.
19
+ - 남자는 새들의 사진을 찍을 준비를 한다.
20
+ - 한 남자가 수갑을 찬 채 감옥을 통과하고 있다.
21
+ - source_sentence: 오토바이를 탄 스폰서를 입은 남자가 손을 들고 오토바이에 앉아 있다.
22
+ sentences:
23
+ - 남자는 오토바이 경주를 준비한다.
24
+ - 한 여성이 라켓을 허공에 대고 라켓 볼 코트 모퉁이를 가로질러 걸어간다.
25
+ - 어떤 남자들은 발레리나 옷을 입고 있다.
26
+ - source_sentence: 경기를 볼 수 있는 스포츠 바.
27
+ sentences:
28
+ - 럭비를 하는 사람
29
+ - 스포츠 바는 게임을 보기에 인기 있는 곳이다.
30
+ - 두 여자 모두 들고 있는 안경으로 술을 마시고 있다.
31
+ - source_sentence: 한 여자와 소년이 경찰 오토바이에 앉아 있다.
32
+ sentences:
33
+ - 여자와 소년이 밖에 있다.
34
+ - 한 남자가 총으로 아기를 쐈다.
35
+ - 한 남자가 물 위에 밧줄을 매고 있다.
36
+ datasets:
37
+ - x2bee/Korean_NLI_dataset
38
+ pipeline_tag: sentence-similarity
39
+ library_name: sentence-transformers
40
+ metrics:
41
+ - pearson_cosine
42
+ - spearman_cosine
43
+ - pearson_euclidean
44
+ - spearman_euclidean
45
+ - pearson_manhattan
46
+ - spearman_manhattan
47
+ - pearson_dot
48
+ - spearman_dot
49
+ - pearson_max
50
+ - spearman_max
51
+ model-index:
52
+ - name: SentenceTransformer based on x2bee/KoModernBERT-base-mlm_v02
53
+ results:
54
+ - task:
55
+ type: semantic-similarity
56
+ name: Semantic Similarity
57
+ dataset:
58
+ name: sts dev
59
+ type: sts_dev
60
+ metrics:
61
+ - type: pearson_cosine
62
+ value: 0.6374494482799764
63
+ name: Pearson Cosine
64
+ - type: spearman_cosine
65
+ value: 0.6328250180270107
66
+ name: Spearman Cosine
67
+ - type: pearson_euclidean
68
+ value: 0.6326629869012427
69
+ name: Pearson Euclidean
70
+ - type: spearman_euclidean
71
+ value: 0.612232056020112
72
+ name: Spearman Euclidean
73
+ - type: pearson_manhattan
74
+ value: 0.6346199347508898
75
+ name: Pearson Manhattan
76
+ - type: spearman_manhattan
77
+ value: 0.615448809374675
78
+ name: Spearman Manhattan
79
+ - type: pearson_dot
80
+ value: 0.5941390124399774
81
+ name: Pearson Dot
82
+ - type: spearman_dot
83
+ value: 0.5741507526998049
84
+ name: Spearman Dot
85
+ - type: pearson_max
86
+ value: 0.6374494482799764
87
+ name: Pearson Max
88
+ - type: spearman_max
89
+ value: 0.6328250180270107
90
+ name: Spearman Max
91
+ ---
92
+
93
+ # SentenceTransformer based on x2bee/KoModernBERT-base-mlm_v02
94
+
95
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [x2bee/KoModernBERT-base-mlm_v02](https://huggingface.co/x2bee/KoModernBERT-base-mlm_v02) on the [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
96
+
97
+ ## Model Details
98
+
99
+ ### Model Description
100
+ - **Model Type:** Sentence Transformer
101
+ - **Base model:** [x2bee/KoModernBERT-base-mlm_v02](https://huggingface.co/x2bee/KoModernBERT-base-mlm_v02) <!-- at revision e70a0396ecbe3f187762e0cb9ee5952fa42e6bb9 -->
102
+ - **Maximum Sequence Length:** 512 tokens
103
+ - **Output Dimensionality:** 768 dimensions
104
+ - **Similarity Function:** Cosine Similarity
105
+ - **Training Dataset:**
106
+ - [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset)
107
+ <!-- - **Language:** Unknown -->
108
+ <!-- - **License:** Unknown -->
109
+
110
+ ### Model Sources
111
+
112
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
113
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
114
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
115
+
116
+ ### Full Model Architecture
117
+
118
+ ```
119
+ SentenceTransformer(
120
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
121
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False, 'include_prompt': True})
122
+ (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
123
+ )
124
+ ```
125
+
126
+ ## Usage
127
+
128
+ ### Direct Usage (Sentence Transformers)
129
+
130
+ First install the Sentence Transformers library:
131
+
132
+ ```bash
133
+ pip install -U sentence-transformers
134
+ ```
135
+
136
+ Then you can load this model and run inference.
137
+ ```python
138
+ from sentence_transformers import SentenceTransformer
139
+
140
+ # Download from the 🤗 Hub
141
+ model = SentenceTransformer("x2bee/KoModernBERT_SBERT_compare_mlmlv5")
142
+ # Run inference
143
+ sentences = [
144
+ '한 여자와 소년이 경찰 오토바이에 앉아 있다.',
145
+ '여자와 소년이 밖에 있다.',
146
+ '한 남자가 물 위에 밧줄을 매고 있다.',
147
+ ]
148
+ embeddings = model.encode(sentences)
149
+ print(embeddings.shape)
150
+ # [3, 768]
151
+
152
+ # Get the similarity scores for the embeddings
153
+ similarities = model.similarity(embeddings, embeddings)
154
+ print(similarities.shape)
155
+ # [3, 3]
156
+ ```
157
+
158
+ <!--
159
+ ### Direct Usage (Transformers)
160
+
161
+ <details><summary>Click to see the direct usage in Transformers</summary>
162
+
163
+ </details>
164
+ -->
165
+
166
+ <!--
167
+ ### Downstream Usage (Sentence Transformers)
168
+
169
+ You can finetune this model on your own dataset.
170
+
171
+ <details><summary>Click to expand</summary>
172
+
173
+ </details>
174
+ -->
175
+
176
+ <!--
177
+ ### Out-of-Scope Use
178
+
179
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
180
+ -->
181
+
182
+ ## Evaluation
183
+
184
+ ### Metrics
185
+
186
+ #### Semantic Similarity
187
+
188
+ * Dataset: `sts_dev`
189
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
190
+
191
+ | Metric | Value |
192
+ |:-------------------|:-----------|
193
+ | pearson_cosine | 0.6374 |
194
+ | spearman_cosine | 0.6328 |
195
+ | pearson_euclidean | 0.6327 |
196
+ | spearman_euclidean | 0.6122 |
197
+ | pearson_manhattan | 0.6346 |
198
+ | spearman_manhattan | 0.6154 |
199
+ | pearson_dot | 0.5941 |
200
+ | spearman_dot | 0.5742 |
201
+ | pearson_max | 0.6374 |
202
+ | **spearman_max** | **0.6328** |
203
+
204
+ <!--
205
+ ## Bias, Risks and Limitations
206
+
207
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
208
+ -->
209
+
210
+ <!--
211
+ ### Recommendations
212
+
213
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
214
+ -->
215
+
216
+ ## Training Details
217
+
218
+ ### Training Dataset
219
+
220
+ #### korean_nli_dataset
221
+
222
+ * Dataset: [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset) at [51cc968](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset/tree/51cc968560f9600460d8af859c5b9a94849790a4)
223
+ * Size: 550,152 training samples
224
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
225
+ * Approximate statistics based on the first 1000 samples:
226
+ | | sentence1 | sentence2 | score |
227
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
228
+ | type | string | string | float |
229
+ | details | <ul><li>min: 8 tokens</li><li>mean: 21.76 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.36 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
230
+ * Samples:
231
+ | sentence1 | sentence2 | score |
232
+ |:-----------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:-----------------|
233
+ | <code>몸에 맞지 않는 노란색 셔츠와 파란색 플래드 스커트를 입은 나이든 여성이 두 개의 통 옆에 앉아 있다.</code> | <code>여자가 역기를 들어올리고 있다.</code> | <code>0.0</code> |
234
+ | <code>갈색 코트를 입은 선글라스를 쓴 한 남성이 담배를 피우며 손님들이 길거리 스탠드에서 물건을 구입하자 코를 긁는다.</code> | <code>갈색 코트를 입은 선글라스를 쓴 청년이 담배를 피우며 손님들이 스테이트 스탠드에서 구매하고 있을 때 코를 긁는다.</code> | <code>0.5</code> |
235
+ | <code>소녀들은 물을 뿌리며 놀면서 킥킥 웃는다.</code> | <code>수도 본관이 고장나서 큰길이 범람했다.</code> | <code>0.0</code> |
236
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
237
+ ```json
238
+ {
239
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
240
+ }
241
+ ```
242
+
243
+ ### Evaluation Dataset
244
+
245
+ #### korean_nli_dataset
246
+
247
+ * Dataset: [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset) at [51cc968](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset/tree/51cc968560f9600460d8af859c5b9a94849790a4)
248
+ * Size: 550,152 evaluation samples
249
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
250
+ * Approximate statistics based on the first 1000 samples:
251
+ | | sentence1 | sentence2 | score |
252
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
253
+ | type | string | string | float |
254
+ | details | <ul><li>min: 4 tokens</li><li>mean: 21.88 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.14 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.52</li><li>max: 1.0</li></ul> |
255
+ * Samples:
256
+ | sentence1 | sentence2 | score |
257
+ |:-------------------------------------------------------------|:------------------------------------------|:-----------------|
258
+ | <code>한 역사학자와 그의 친구는 연구를 위해 더 많은 화석을 찾기 위해 광산을 파고 있다.</code> | <code>역사가는 공부를 위해 친구와 함께 땅을 파고 있다.</code> | <code>0.5</code> |
259
+ | <code>소년은 회전목마에 도움을 받는다.</code> | <code>소년이 당나귀를 타고 있다.</code> | <code>0.0</code> |
260
+ | <code>세탁실에서 사색적인 포즈를 취하고 있는 남자.</code> | <code>한 남자가 파티오 밖에 있다.</code> | <code>0.0</code> |
261
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
262
+ ```json
263
+ {
264
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
265
+ }
266
+ ```
267
+
268
+ ### Training Hyperparameters
269
+ #### Non-Default Hyperparameters
270
+
271
+ - `eval_strategy`: epoch
272
+ - `per_device_train_batch_size`: 32
273
+ - `per_device_eval_batch_size`: 32
274
+ - `gradient_accumulation_steps`: 2
275
+ - `learning_rate`: 1e-05
276
+ - `num_train_epochs`: 2
277
+ - `warmup_ratio`: 0.3
278
+ - `push_to_hub`: True
279
+ - `hub_model_id`: x2bee/KoModernBERT_SBERT_compare_mlmlv5
280
+ - `batch_sampler`: no_duplicates
281
+
282
+ #### All Hyperparameters
283
+ <details><summary>Click to expand</summary>
284
+
285
+ - `overwrite_output_dir`: False
286
+ - `do_predict`: False
287
+ - `eval_strategy`: epoch
288
+ - `prediction_loss_only`: True
289
+ - `per_device_train_batch_size`: 32
290
+ - `per_device_eval_batch_size`: 32
291
+ - `per_gpu_train_batch_size`: None
292
+ - `per_gpu_eval_batch_size`: None
293
+ - `gradient_accumulation_steps`: 2
294
+ - `eval_accumulation_steps`: None
295
+ - `torch_empty_cache_steps`: None
296
+ - `learning_rate`: 1e-05
297
+ - `weight_decay`: 0.0
298
+ - `adam_beta1`: 0.9
299
+ - `adam_beta2`: 0.999
300
+ - `adam_epsilon`: 1e-08
301
+ - `max_grad_norm`: 1.0
302
+ - `num_train_epochs`: 2
303
+ - `max_steps`: -1
304
+ - `lr_scheduler_type`: linear
305
+ - `lr_scheduler_kwargs`: {}
306
+ - `warmup_ratio`: 0.3
307
+ - `warmup_steps`: 0
308
+ - `log_level`: passive
309
+ - `log_level_replica`: warning
310
+ - `log_on_each_node`: True
311
+ - `logging_nan_inf_filter`: True
312
+ - `save_safetensors`: True
313
+ - `save_on_each_node`: False
314
+ - `save_only_model`: False
315
+ - `restore_callback_states_from_checkpoint`: False
316
+ - `no_cuda`: False
317
+ - `use_cpu`: False
318
+ - `use_mps_device`: False
319
+ - `seed`: 42
320
+ - `data_seed`: None
321
+ - `jit_mode_eval`: False
322
+ - `use_ipex`: False
323
+ - `bf16`: False
324
+ - `fp16`: False
325
+ - `fp16_opt_level`: O1
326
+ - `half_precision_backend`: auto
327
+ - `bf16_full_eval`: False
328
+ - `fp16_full_eval`: False
329
+ - `tf32`: None
330
+ - `local_rank`: 0
331
+ - `ddp_backend`: None
332
+ - `tpu_num_cores`: None
333
+ - `tpu_metrics_debug`: False
334
+ - `debug`: []
335
+ - `dataloader_drop_last`: True
336
+ - `dataloader_num_workers`: 0
337
+ - `dataloader_prefetch_factor`: None
338
+ - `past_index`: -1
339
+ - `disable_tqdm`: False
340
+ - `remove_unused_columns`: True
341
+ - `label_names`: None
342
+ - `load_best_model_at_end`: False
343
+ - `ignore_data_skip`: False
344
+ - `fsdp`: []
345
+ - `fsdp_min_num_params`: 0
346
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
347
+ - `fsdp_transformer_layer_cls_to_wrap`: None
348
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
349
+ - `deepspeed`: None
350
+ - `label_smoothing_factor`: 0.0
351
+ - `optim`: adamw_torch
352
+ - `optim_args`: None
353
+ - `adafactor`: False
354
+ - `group_by_length`: False
355
+ - `length_column_name`: length
356
+ - `ddp_find_unused_parameters`: None
357
+ - `ddp_bucket_cap_mb`: None
358
+ - `ddp_broadcast_buffers`: False
359
+ - `dataloader_pin_memory`: True
360
+ - `dataloader_persistent_workers`: False
361
+ - `skip_memory_metrics`: True
362
+ - `use_legacy_prediction_loop`: False
363
+ - `push_to_hub`: True
364
+ - `resume_from_checkpoint`: None
365
+ - `hub_model_id`: x2bee/KoModernBERT_SBERT_compare_mlmlv5
366
+ - `hub_strategy`: every_save
367
+ - `hub_private_repo`: None
368
+ - `hub_always_push`: False
369
+ - `gradient_checkpointing`: False
370
+ - `gradient_checkpointing_kwargs`: None
371
+ - `include_inputs_for_metrics`: False
372
+ - `include_for_metrics`: []
373
+ - `eval_do_concat_batches`: True
374
+ - `fp16_backend`: auto
375
+ - `push_to_hub_model_id`: None
376
+ - `push_to_hub_organization`: None
377
+ - `mp_parameters`:
378
+ - `auto_find_batch_size`: False
379
+ - `full_determinism`: False
380
+ - `torchdynamo`: None
381
+ - `ray_scope`: last
382
+ - `ddp_timeout`: 1800
383
+ - `torch_compile`: False
384
+ - `torch_compile_backend`: None
385
+ - `torch_compile_mode`: None
386
+ - `dispatch_batches`: None
387
+ - `split_batches`: None
388
+ - `include_tokens_per_second`: False
389
+ - `include_num_input_tokens_seen`: False
390
+ - `neftune_noise_alpha`: None
391
+ - `optim_target_modules`: None
392
+ - `batch_eval_metrics`: False
393
+ - `eval_on_start`: False
394
+ - `use_liger_kernel`: False
395
+ - `eval_use_gather_object`: False
396
+ - `average_tokens_across_devices`: False
397
+ - `prompts`: None
398
+ - `batch_sampler`: no_duplicates
399
+ - `multi_dataset_batch_sampler`: proportional
400
+
401
+ </details>
402
+
403
+ ### Training Logs
404
+ | Epoch | Step | Training Loss | Validation Loss | sts_dev_spearman_max |
405
+ |:------:|:----:|:-------------:|:---------------:|:--------------------:|
406
+ | 0 | 0 | - | - | 0.3994 |
407
+ | 0.0980 | 100 | 0.3216 | - | - |
408
+ | 0.1960 | 200 | 0.2019 | - | - |
409
+ | 0.2940 | 300 | 0.1451 | - | - |
410
+ | 0.3920 | 400 | 0.1327 | - | - |
411
+ | 0.4900 | 500 | 0.1231 | - | - |
412
+ | 0.5879 | 600 | 0.1138 | - | - |
413
+ | 0.6859 | 700 | 0.1091 | - | - |
414
+ | 0.7839 | 800 | 0.106 | - | - |
415
+ | 0.8819 | 900 | 0.1047 | - | - |
416
+ | 0.9799 | 1000 | 0.1029 | - | - |
417
+ | 1.0 | 1021 | - | 0.1003 | 0.6352 |
418
+ | 1.0774 | 1100 | 0.0999 | - | - |
419
+ | 1.1754 | 1200 | 0.0994 | - | - |
420
+ | 1.2734 | 1300 | 0.0989 | - | - |
421
+ | 1.3714 | 1400 | 0.0974 | - | - |
422
+ | 1.4694 | 1500 | 0.0975 | - | - |
423
+ | 1.5674 | 1600 | 0.0945 | - | - |
424
+ | 1.6654 | 1700 | 0.0933 | - | - |
425
+ | 1.7634 | 1800 | 0.0922 | - | - |
426
+ | 1.8613 | 1900 | 0.0928 | - | - |
427
+ | 1.9593 | 2000 | 0.0928 | - | - |
428
+ | 1.9985 | 2040 | - | 0.0955 | 0.6328 |
429
+
430
+
431
+ ### Framework Versions
432
+ - Python: 3.11.10
433
+ - Sentence Transformers: 3.3.1
434
+ - Transformers: 4.48.0.dev0
435
+ - PyTorch: 2.5.1+cu124
436
+ - Accelerate: 1.2.1
437
+ - Datasets: 3.2.0
438
+ - Tokenizers: 0.21.0
439
+
440
+ ## Citation
441
+
442
+ ### BibTeX
443
+
444
+ #### Sentence Transformers
445
+ ```bibtex
446
+ @inproceedings{reimers-2019-sentence-bert,
447
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
448
+ author = "Reimers, Nils and Gurevych, Iryna",
449
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
450
+ month = "11",
451
+ year = "2019",
452
+ publisher = "Association for Computational Linguistics",
453
+ url = "https://arxiv.org/abs/1908.10084",
454
+ }
455
+ ```
456
+
457
+ <!--
458
+ ## Glossary
459
+
460
+ *Clearly define terms in order to be accessible across audiences.*
461
+ -->
462
+
463
+ <!--
464
+ ## Model Card Authors
465
+
466
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
467
+ -->
468
+
469
+ <!--
470
+ ## Model Card Contact
471
+
472
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
473
+ -->
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.48.0.dev0",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }