x2bee/KoModernBERT_SBERT_compare_mlmlv5
Browse files- 1_Pooling/config.json +10 -0
- 2_Dense/config.json +1 -0
- 2_Dense/model.safetensors +3 -0
- README.md +473 -0
- config_sentence_transformers.json +10 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": true,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.activation.Tanh"}
|
2_Dense/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:47f06bfc7c718988a4e54cdadfc958038eeb065cfc638e5b8d12a8b67c9bc989
|
3 |
+
size 2362528
|
README.md
ADDED
@@ -0,0 +1,473 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:550152
|
8 |
+
- loss:CosineSimilarityLoss
|
9 |
+
base_model: x2bee/KoModernBERT-base-mlm_v02
|
10 |
+
widget:
|
11 |
+
- source_sentence: 한 남자가 다리가 허벅지에 있고 자전거 헬멧이 두 개 뒤에 있는 여자 옆에 앉아 있다.
|
12 |
+
sentences:
|
13 |
+
- 그 어린 소년은 야외에서 장난감 비행기를 날리고 있었다.
|
14 |
+
- 사람들은 더 잘 보기 위해 서 있다.
|
15 |
+
- 남자가 여자의 허벅지에 다리를 얹고 있다.
|
16 |
+
- source_sentence: 도끼로 구조물을 무너뜨리는 남자.
|
17 |
+
sentences:
|
18 |
+
- 소년이 당나귀를 타고 있다.
|
19 |
+
- 남자는 새들의 사진을 찍을 준비를 한다.
|
20 |
+
- 한 남자가 수갑을 찬 채 감옥을 통과하고 있다.
|
21 |
+
- source_sentence: 오토바이를 탄 스폰서를 입은 남자가 손을 들고 오토바이에 앉아 있다.
|
22 |
+
sentences:
|
23 |
+
- 남자는 오토바이 경주를 준비한다.
|
24 |
+
- 한 여성이 라켓을 허공에 대고 라켓 볼 코트 모퉁이를 가로질러 걸어간다.
|
25 |
+
- 어떤 남자들은 발레리나 옷을 입고 있다.
|
26 |
+
- source_sentence: 경기를 볼 수 있는 스포츠 바.
|
27 |
+
sentences:
|
28 |
+
- 럭비를 하는 사람
|
29 |
+
- 스포츠 바는 게임을 보기에 인기 있는 곳이다.
|
30 |
+
- 두 여자 모두 들고 있는 안경으로 술을 마시고 있다.
|
31 |
+
- source_sentence: 한 여자와 소년이 경찰 오토바이에 앉아 있다.
|
32 |
+
sentences:
|
33 |
+
- 여자와 소년이 밖에 있다.
|
34 |
+
- 한 남자가 총으로 아기를 쐈다.
|
35 |
+
- 한 남자가 물 위에 밧줄을 매고 있다.
|
36 |
+
datasets:
|
37 |
+
- x2bee/Korean_NLI_dataset
|
38 |
+
pipeline_tag: sentence-similarity
|
39 |
+
library_name: sentence-transformers
|
40 |
+
metrics:
|
41 |
+
- pearson_cosine
|
42 |
+
- spearman_cosine
|
43 |
+
- pearson_euclidean
|
44 |
+
- spearman_euclidean
|
45 |
+
- pearson_manhattan
|
46 |
+
- spearman_manhattan
|
47 |
+
- pearson_dot
|
48 |
+
- spearman_dot
|
49 |
+
- pearson_max
|
50 |
+
- spearman_max
|
51 |
+
model-index:
|
52 |
+
- name: SentenceTransformer based on x2bee/KoModernBERT-base-mlm_v02
|
53 |
+
results:
|
54 |
+
- task:
|
55 |
+
type: semantic-similarity
|
56 |
+
name: Semantic Similarity
|
57 |
+
dataset:
|
58 |
+
name: sts dev
|
59 |
+
type: sts_dev
|
60 |
+
metrics:
|
61 |
+
- type: pearson_cosine
|
62 |
+
value: 0.6374494482799764
|
63 |
+
name: Pearson Cosine
|
64 |
+
- type: spearman_cosine
|
65 |
+
value: 0.6328250180270107
|
66 |
+
name: Spearman Cosine
|
67 |
+
- type: pearson_euclidean
|
68 |
+
value: 0.6326629869012427
|
69 |
+
name: Pearson Euclidean
|
70 |
+
- type: spearman_euclidean
|
71 |
+
value: 0.612232056020112
|
72 |
+
name: Spearman Euclidean
|
73 |
+
- type: pearson_manhattan
|
74 |
+
value: 0.6346199347508898
|
75 |
+
name: Pearson Manhattan
|
76 |
+
- type: spearman_manhattan
|
77 |
+
value: 0.615448809374675
|
78 |
+
name: Spearman Manhattan
|
79 |
+
- type: pearson_dot
|
80 |
+
value: 0.5941390124399774
|
81 |
+
name: Pearson Dot
|
82 |
+
- type: spearman_dot
|
83 |
+
value: 0.5741507526998049
|
84 |
+
name: Spearman Dot
|
85 |
+
- type: pearson_max
|
86 |
+
value: 0.6374494482799764
|
87 |
+
name: Pearson Max
|
88 |
+
- type: spearman_max
|
89 |
+
value: 0.6328250180270107
|
90 |
+
name: Spearman Max
|
91 |
+
---
|
92 |
+
|
93 |
+
# SentenceTransformer based on x2bee/KoModernBERT-base-mlm_v02
|
94 |
+
|
95 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [x2bee/KoModernBERT-base-mlm_v02](https://huggingface.co/x2bee/KoModernBERT-base-mlm_v02) on the [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
96 |
+
|
97 |
+
## Model Details
|
98 |
+
|
99 |
+
### Model Description
|
100 |
+
- **Model Type:** Sentence Transformer
|
101 |
+
- **Base model:** [x2bee/KoModernBERT-base-mlm_v02](https://huggingface.co/x2bee/KoModernBERT-base-mlm_v02) <!-- at revision e70a0396ecbe3f187762e0cb9ee5952fa42e6bb9 -->
|
102 |
+
- **Maximum Sequence Length:** 512 tokens
|
103 |
+
- **Output Dimensionality:** 768 dimensions
|
104 |
+
- **Similarity Function:** Cosine Similarity
|
105 |
+
- **Training Dataset:**
|
106 |
+
- [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset)
|
107 |
+
<!-- - **Language:** Unknown -->
|
108 |
+
<!-- - **License:** Unknown -->
|
109 |
+
|
110 |
+
### Model Sources
|
111 |
+
|
112 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
113 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
114 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
115 |
+
|
116 |
+
### Full Model Architecture
|
117 |
+
|
118 |
+
```
|
119 |
+
SentenceTransformer(
|
120 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
|
121 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': True, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
122 |
+
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
|
123 |
+
)
|
124 |
+
```
|
125 |
+
|
126 |
+
## Usage
|
127 |
+
|
128 |
+
### Direct Usage (Sentence Transformers)
|
129 |
+
|
130 |
+
First install the Sentence Transformers library:
|
131 |
+
|
132 |
+
```bash
|
133 |
+
pip install -U sentence-transformers
|
134 |
+
```
|
135 |
+
|
136 |
+
Then you can load this model and run inference.
|
137 |
+
```python
|
138 |
+
from sentence_transformers import SentenceTransformer
|
139 |
+
|
140 |
+
# Download from the 🤗 Hub
|
141 |
+
model = SentenceTransformer("x2bee/KoModernBERT_SBERT_compare_mlmlv5")
|
142 |
+
# Run inference
|
143 |
+
sentences = [
|
144 |
+
'한 여자와 소년이 경찰 오토바이에 앉아 있다.',
|
145 |
+
'여자와 소년이 밖에 있다.',
|
146 |
+
'한 남자가 물 위에 밧줄을 매고 있다.',
|
147 |
+
]
|
148 |
+
embeddings = model.encode(sentences)
|
149 |
+
print(embeddings.shape)
|
150 |
+
# [3, 768]
|
151 |
+
|
152 |
+
# Get the similarity scores for the embeddings
|
153 |
+
similarities = model.similarity(embeddings, embeddings)
|
154 |
+
print(similarities.shape)
|
155 |
+
# [3, 3]
|
156 |
+
```
|
157 |
+
|
158 |
+
<!--
|
159 |
+
### Direct Usage (Transformers)
|
160 |
+
|
161 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
162 |
+
|
163 |
+
</details>
|
164 |
+
-->
|
165 |
+
|
166 |
+
<!--
|
167 |
+
### Downstream Usage (Sentence Transformers)
|
168 |
+
|
169 |
+
You can finetune this model on your own dataset.
|
170 |
+
|
171 |
+
<details><summary>Click to expand</summary>
|
172 |
+
|
173 |
+
</details>
|
174 |
+
-->
|
175 |
+
|
176 |
+
<!--
|
177 |
+
### Out-of-Scope Use
|
178 |
+
|
179 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
180 |
+
-->
|
181 |
+
|
182 |
+
## Evaluation
|
183 |
+
|
184 |
+
### Metrics
|
185 |
+
|
186 |
+
#### Semantic Similarity
|
187 |
+
|
188 |
+
* Dataset: `sts_dev`
|
189 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
190 |
+
|
191 |
+
| Metric | Value |
|
192 |
+
|:-------------------|:-----------|
|
193 |
+
| pearson_cosine | 0.6374 |
|
194 |
+
| spearman_cosine | 0.6328 |
|
195 |
+
| pearson_euclidean | 0.6327 |
|
196 |
+
| spearman_euclidean | 0.6122 |
|
197 |
+
| pearson_manhattan | 0.6346 |
|
198 |
+
| spearman_manhattan | 0.6154 |
|
199 |
+
| pearson_dot | 0.5941 |
|
200 |
+
| spearman_dot | 0.5742 |
|
201 |
+
| pearson_max | 0.6374 |
|
202 |
+
| **spearman_max** | **0.6328** |
|
203 |
+
|
204 |
+
<!--
|
205 |
+
## Bias, Risks and Limitations
|
206 |
+
|
207 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
208 |
+
-->
|
209 |
+
|
210 |
+
<!--
|
211 |
+
### Recommendations
|
212 |
+
|
213 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
214 |
+
-->
|
215 |
+
|
216 |
+
## Training Details
|
217 |
+
|
218 |
+
### Training Dataset
|
219 |
+
|
220 |
+
#### korean_nli_dataset
|
221 |
+
|
222 |
+
* Dataset: [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset) at [51cc968](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset/tree/51cc968560f9600460d8af859c5b9a94849790a4)
|
223 |
+
* Size: 550,152 training samples
|
224 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
225 |
+
* Approximate statistics based on the first 1000 samples:
|
226 |
+
| | sentence1 | sentence2 | score |
|
227 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
228 |
+
| type | string | string | float |
|
229 |
+
| details | <ul><li>min: 8 tokens</li><li>mean: 21.76 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.36 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
|
230 |
+
* Samples:
|
231 |
+
| sentence1 | sentence2 | score |
|
232 |
+
|:-----------------------------------------------------------------------------|:-----------------------------------------------------------------------------|:-----------------|
|
233 |
+
| <code>몸에 맞지 않는 노란색 셔츠와 파란색 플래드 스커트를 입은 나이든 여성이 두 개의 통 옆에 앉아 있다.</code> | <code>여자가 역기를 들어올리고 있다.</code> | <code>0.0</code> |
|
234 |
+
| <code>갈색 코트를 입은 선글라스를 쓴 한 남성이 담배를 피우며 손님들이 길거리 스탠드에서 물건을 구입하자 코를 긁는다.</code> | <code>갈색 코트를 입은 선글라스를 쓴 청년이 담배를 피우며 손님들이 스테이트 스탠드에서 구매하고 있을 때 코를 긁는다.</code> | <code>0.5</code> |
|
235 |
+
| <code>소녀들은 물을 뿌리며 놀면서 킥킥 웃는다.</code> | <code>수도 본관이 고장나서 큰길이 범람했다.</code> | <code>0.0</code> |
|
236 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
237 |
+
```json
|
238 |
+
{
|
239 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
240 |
+
}
|
241 |
+
```
|
242 |
+
|
243 |
+
### Evaluation Dataset
|
244 |
+
|
245 |
+
#### korean_nli_dataset
|
246 |
+
|
247 |
+
* Dataset: [korean_nli_dataset](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset) at [51cc968](https://huggingface.co/datasets/x2bee/Korean_NLI_dataset/tree/51cc968560f9600460d8af859c5b9a94849790a4)
|
248 |
+
* Size: 550,152 evaluation samples
|
249 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
250 |
+
* Approximate statistics based on the first 1000 samples:
|
251 |
+
| | sentence1 | sentence2 | score |
|
252 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
253 |
+
| type | string | string | float |
|
254 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 21.88 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.14 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.52</li><li>max: 1.0</li></ul> |
|
255 |
+
* Samples:
|
256 |
+
| sentence1 | sentence2 | score |
|
257 |
+
|:-------------------------------------------------------------|:------------------------------------------|:-----------------|
|
258 |
+
| <code>한 역사학자와 그의 친구는 연구를 위해 더 많은 화석을 찾기 위해 광산을 파고 있다.</code> | <code>역사가는 공부를 위해 친구와 함께 땅을 파고 있다.</code> | <code>0.5</code> |
|
259 |
+
| <code>소년은 회전목마에 도움을 받는다.</code> | <code>소년이 당나귀를 타고 있다.</code> | <code>0.0</code> |
|
260 |
+
| <code>세탁실에서 사색적인 포즈를 취하고 있는 남자.</code> | <code>한 남자가 파티오 밖에 있다.</code> | <code>0.0</code> |
|
261 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
262 |
+
```json
|
263 |
+
{
|
264 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
265 |
+
}
|
266 |
+
```
|
267 |
+
|
268 |
+
### Training Hyperparameters
|
269 |
+
#### Non-Default Hyperparameters
|
270 |
+
|
271 |
+
- `eval_strategy`: epoch
|
272 |
+
- `per_device_train_batch_size`: 32
|
273 |
+
- `per_device_eval_batch_size`: 32
|
274 |
+
- `gradient_accumulation_steps`: 2
|
275 |
+
- `learning_rate`: 1e-05
|
276 |
+
- `num_train_epochs`: 2
|
277 |
+
- `warmup_ratio`: 0.3
|
278 |
+
- `push_to_hub`: True
|
279 |
+
- `hub_model_id`: x2bee/KoModernBERT_SBERT_compare_mlmlv5
|
280 |
+
- `batch_sampler`: no_duplicates
|
281 |
+
|
282 |
+
#### All Hyperparameters
|
283 |
+
<details><summary>Click to expand</summary>
|
284 |
+
|
285 |
+
- `overwrite_output_dir`: False
|
286 |
+
- `do_predict`: False
|
287 |
+
- `eval_strategy`: epoch
|
288 |
+
- `prediction_loss_only`: True
|
289 |
+
- `per_device_train_batch_size`: 32
|
290 |
+
- `per_device_eval_batch_size`: 32
|
291 |
+
- `per_gpu_train_batch_size`: None
|
292 |
+
- `per_gpu_eval_batch_size`: None
|
293 |
+
- `gradient_accumulation_steps`: 2
|
294 |
+
- `eval_accumulation_steps`: None
|
295 |
+
- `torch_empty_cache_steps`: None
|
296 |
+
- `learning_rate`: 1e-05
|
297 |
+
- `weight_decay`: 0.0
|
298 |
+
- `adam_beta1`: 0.9
|
299 |
+
- `adam_beta2`: 0.999
|
300 |
+
- `adam_epsilon`: 1e-08
|
301 |
+
- `max_grad_norm`: 1.0
|
302 |
+
- `num_train_epochs`: 2
|
303 |
+
- `max_steps`: -1
|
304 |
+
- `lr_scheduler_type`: linear
|
305 |
+
- `lr_scheduler_kwargs`: {}
|
306 |
+
- `warmup_ratio`: 0.3
|
307 |
+
- `warmup_steps`: 0
|
308 |
+
- `log_level`: passive
|
309 |
+
- `log_level_replica`: warning
|
310 |
+
- `log_on_each_node`: True
|
311 |
+
- `logging_nan_inf_filter`: True
|
312 |
+
- `save_safetensors`: True
|
313 |
+
- `save_on_each_node`: False
|
314 |
+
- `save_only_model`: False
|
315 |
+
- `restore_callback_states_from_checkpoint`: False
|
316 |
+
- `no_cuda`: False
|
317 |
+
- `use_cpu`: False
|
318 |
+
- `use_mps_device`: False
|
319 |
+
- `seed`: 42
|
320 |
+
- `data_seed`: None
|
321 |
+
- `jit_mode_eval`: False
|
322 |
+
- `use_ipex`: False
|
323 |
+
- `bf16`: False
|
324 |
+
- `fp16`: False
|
325 |
+
- `fp16_opt_level`: O1
|
326 |
+
- `half_precision_backend`: auto
|
327 |
+
- `bf16_full_eval`: False
|
328 |
+
- `fp16_full_eval`: False
|
329 |
+
- `tf32`: None
|
330 |
+
- `local_rank`: 0
|
331 |
+
- `ddp_backend`: None
|
332 |
+
- `tpu_num_cores`: None
|
333 |
+
- `tpu_metrics_debug`: False
|
334 |
+
- `debug`: []
|
335 |
+
- `dataloader_drop_last`: True
|
336 |
+
- `dataloader_num_workers`: 0
|
337 |
+
- `dataloader_prefetch_factor`: None
|
338 |
+
- `past_index`: -1
|
339 |
+
- `disable_tqdm`: False
|
340 |
+
- `remove_unused_columns`: True
|
341 |
+
- `label_names`: None
|
342 |
+
- `load_best_model_at_end`: False
|
343 |
+
- `ignore_data_skip`: False
|
344 |
+
- `fsdp`: []
|
345 |
+
- `fsdp_min_num_params`: 0
|
346 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
347 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
348 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
349 |
+
- `deepspeed`: None
|
350 |
+
- `label_smoothing_factor`: 0.0
|
351 |
+
- `optim`: adamw_torch
|
352 |
+
- `optim_args`: None
|
353 |
+
- `adafactor`: False
|
354 |
+
- `group_by_length`: False
|
355 |
+
- `length_column_name`: length
|
356 |
+
- `ddp_find_unused_parameters`: None
|
357 |
+
- `ddp_bucket_cap_mb`: None
|
358 |
+
- `ddp_broadcast_buffers`: False
|
359 |
+
- `dataloader_pin_memory`: True
|
360 |
+
- `dataloader_persistent_workers`: False
|
361 |
+
- `skip_memory_metrics`: True
|
362 |
+
- `use_legacy_prediction_loop`: False
|
363 |
+
- `push_to_hub`: True
|
364 |
+
- `resume_from_checkpoint`: None
|
365 |
+
- `hub_model_id`: x2bee/KoModernBERT_SBERT_compare_mlmlv5
|
366 |
+
- `hub_strategy`: every_save
|
367 |
+
- `hub_private_repo`: None
|
368 |
+
- `hub_always_push`: False
|
369 |
+
- `gradient_checkpointing`: False
|
370 |
+
- `gradient_checkpointing_kwargs`: None
|
371 |
+
- `include_inputs_for_metrics`: False
|
372 |
+
- `include_for_metrics`: []
|
373 |
+
- `eval_do_concat_batches`: True
|
374 |
+
- `fp16_backend`: auto
|
375 |
+
- `push_to_hub_model_id`: None
|
376 |
+
- `push_to_hub_organization`: None
|
377 |
+
- `mp_parameters`:
|
378 |
+
- `auto_find_batch_size`: False
|
379 |
+
- `full_determinism`: False
|
380 |
+
- `torchdynamo`: None
|
381 |
+
- `ray_scope`: last
|
382 |
+
- `ddp_timeout`: 1800
|
383 |
+
- `torch_compile`: False
|
384 |
+
- `torch_compile_backend`: None
|
385 |
+
- `torch_compile_mode`: None
|
386 |
+
- `dispatch_batches`: None
|
387 |
+
- `split_batches`: None
|
388 |
+
- `include_tokens_per_second`: False
|
389 |
+
- `include_num_input_tokens_seen`: False
|
390 |
+
- `neftune_noise_alpha`: None
|
391 |
+
- `optim_target_modules`: None
|
392 |
+
- `batch_eval_metrics`: False
|
393 |
+
- `eval_on_start`: False
|
394 |
+
- `use_liger_kernel`: False
|
395 |
+
- `eval_use_gather_object`: False
|
396 |
+
- `average_tokens_across_devices`: False
|
397 |
+
- `prompts`: None
|
398 |
+
- `batch_sampler`: no_duplicates
|
399 |
+
- `multi_dataset_batch_sampler`: proportional
|
400 |
+
|
401 |
+
</details>
|
402 |
+
|
403 |
+
### Training Logs
|
404 |
+
| Epoch | Step | Training Loss | Validation Loss | sts_dev_spearman_max |
|
405 |
+
|:------:|:----:|:-------------:|:---------------:|:--------------------:|
|
406 |
+
| 0 | 0 | - | - | 0.3994 |
|
407 |
+
| 0.0980 | 100 | 0.3216 | - | - |
|
408 |
+
| 0.1960 | 200 | 0.2019 | - | - |
|
409 |
+
| 0.2940 | 300 | 0.1451 | - | - |
|
410 |
+
| 0.3920 | 400 | 0.1327 | - | - |
|
411 |
+
| 0.4900 | 500 | 0.1231 | - | - |
|
412 |
+
| 0.5879 | 600 | 0.1138 | - | - |
|
413 |
+
| 0.6859 | 700 | 0.1091 | - | - |
|
414 |
+
| 0.7839 | 800 | 0.106 | - | - |
|
415 |
+
| 0.8819 | 900 | 0.1047 | - | - |
|
416 |
+
| 0.9799 | 1000 | 0.1029 | - | - |
|
417 |
+
| 1.0 | 1021 | - | 0.1003 | 0.6352 |
|
418 |
+
| 1.0774 | 1100 | 0.0999 | - | - |
|
419 |
+
| 1.1754 | 1200 | 0.0994 | - | - |
|
420 |
+
| 1.2734 | 1300 | 0.0989 | - | - |
|
421 |
+
| 1.3714 | 1400 | 0.0974 | - | - |
|
422 |
+
| 1.4694 | 1500 | 0.0975 | - | - |
|
423 |
+
| 1.5674 | 1600 | 0.0945 | - | - |
|
424 |
+
| 1.6654 | 1700 | 0.0933 | - | - |
|
425 |
+
| 1.7634 | 1800 | 0.0922 | - | - |
|
426 |
+
| 1.8613 | 1900 | 0.0928 | - | - |
|
427 |
+
| 1.9593 | 2000 | 0.0928 | - | - |
|
428 |
+
| 1.9985 | 2040 | - | 0.0955 | 0.6328 |
|
429 |
+
|
430 |
+
|
431 |
+
### Framework Versions
|
432 |
+
- Python: 3.11.10
|
433 |
+
- Sentence Transformers: 3.3.1
|
434 |
+
- Transformers: 4.48.0.dev0
|
435 |
+
- PyTorch: 2.5.1+cu124
|
436 |
+
- Accelerate: 1.2.1
|
437 |
+
- Datasets: 3.2.0
|
438 |
+
- Tokenizers: 0.21.0
|
439 |
+
|
440 |
+
## Citation
|
441 |
+
|
442 |
+
### BibTeX
|
443 |
+
|
444 |
+
#### Sentence Transformers
|
445 |
+
```bibtex
|
446 |
+
@inproceedings{reimers-2019-sentence-bert,
|
447 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
448 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
449 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
450 |
+
month = "11",
|
451 |
+
year = "2019",
|
452 |
+
publisher = "Association for Computational Linguistics",
|
453 |
+
url = "https://arxiv.org/abs/1908.10084",
|
454 |
+
}
|
455 |
+
```
|
456 |
+
|
457 |
+
<!--
|
458 |
+
## Glossary
|
459 |
+
|
460 |
+
*Clearly define terms in order to be accessible across audiences.*
|
461 |
+
-->
|
462 |
+
|
463 |
+
<!--
|
464 |
+
## Model Card Authors
|
465 |
+
|
466 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
467 |
+
-->
|
468 |
+
|
469 |
+
<!--
|
470 |
+
## Model Card Contact
|
471 |
+
|
472 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
473 |
+
-->
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.48.0.dev0",
|
5 |
+
"pytorch": "2.5.1+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|