File size: 20,126 Bytes
61a137c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9846683
61a137c
 
9846683
61a137c
 
9846683
61a137c
 
9846683
61a137c
 
9846683
61a137c
 
9846683
61a137c
 
9846683
61a137c
 
9846683
61a137c
 
9846683
61a137c
 
9846683
61a137c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9846683
61a137c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9846683
 
 
 
 
 
 
 
 
 
 
 
61a137c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9846683
61a137c
 
 
9846683
61a137c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9846683
61a137c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9846683
61a137c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9846683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61a137c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5749
- loss:CosineSimilarityLoss
base_model: CocoRoF/ModernBERT-SimCSE_v02
widget:
- source_sentence: 우리는 움직이는 동행 우주 정지 좌표계에 비례하여 이동하고 있습니다 ...  371km / s에서 별자리 leo
    쪽으로. "
  sentences:
  - 두 마리의 독수리가 가지에 앉는다.
  - 다른 물체와는 관련이 없는 '정지'는 없다.
  - 소녀는 버스의 열린 문 앞에 서 있다.
- source_sentence: 숲에는 개들이 있다.
  sentences:
  - 양을 보는 아이들.
  - 여왕의 배우자를 "왕"이라고 부르지 않는 것은 아주 좋은 이유가 있다. 왜냐하면 그들은 왕이 아니기 때문이다.
  - 개들은 숲속에 혼자 있다.
- source_sentence: '첫째, 두 가지 다른 종류의 대시가 있다는 것을 알아야 합니다 : en 대시와 em 대시.'
  sentences:
  - 그들은  물건들을  주변에 두고 가거나 집의 정리를 해칠 의도가 없다.
  - 세미콜론은 혼자 있을  있는 문장에 참여하는데 사용되지만, 그들의 관계를 강조하기 위해 결합됩니다.
  - 그의 남동생이 지켜보는 동안  앞에서 트럼펫을 연주하는 금발의 아이.
- source_sentence:  여성이 생선 껍질을 벗기고 있다.
  sentences:
  -  남자가 수영장으로 뛰어들었다.
  -  여성이 프라이팬에 노란 혼합물을 부어 넣고 있다.
  -  마리의 갈색 개가  속에서 서로 놀고 있다.
- source_sentence: 버스가 바쁜 길을 따라 운전한다.
  sentences:
  - 우리와 같은 태양계가 은하계 밖에서 존재할 수도 있을 것입니다.
  -  여자는 데이트하러 가는 중이다.
  - 녹색 버스가 도로를 따라 내려간다.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_euclidean
- spearman_euclidean
- pearson_manhattan
- spearman_manhattan
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
model-index:
- name: SentenceTransformer based on CocoRoF/ModernBERT-SimCSE_v02
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: sts dev
      type: sts_dev
    metrics:
    - type: pearson_cosine
      value: 0.8223949445074785
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.8220107207834706
      name: Spearman Cosine
    - type: pearson_euclidean
      value: 0.7785831525283676
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.7815628643916452
      name: Spearman Euclidean
    - type: pearson_manhattan
      value: 0.7809119630672191
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.7846536514745763
      name: Spearman Manhattan
    - type: pearson_dot
      value: 0.7543765794886113
      name: Pearson Dot
    - type: spearman_dot
      value: 0.7434525191412167
      name: Spearman Dot
    - type: pearson_max
      value: 0.8223949445074785
      name: Pearson Max
    - type: spearman_max
      value: 0.8220107207834706
      name: Spearman Max
---

# SentenceTransformer based on CocoRoF/ModernBERT-SimCSE_v02

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [CocoRoF/ModernBERT-SimCSE_v02](https://huggingface.co/CocoRoF/ModernBERT-SimCSE_v02). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [CocoRoF/ModernBERT-SimCSE_v02](https://huggingface.co/CocoRoF/ModernBERT-SimCSE_v02) <!-- at revision de4148c764893843e15a4e0b241fe308147a9aaa -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("CocoRoF/ModernBERT-SimCSE-multitask_v03")
# Run inference
sentences = [
    '버스가 바쁜 길을 따라 운전한다.',
    '녹색 버스가 도로를 따라 내려간다.',
    '그 여자는 데이트하러 가는 중이다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity

* Dataset: `sts_dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value     |
|:-------------------|:----------|
| pearson_cosine     | 0.8224    |
| spearman_cosine    | 0.822     |
| pearson_euclidean  | 0.7786    |
| spearman_euclidean | 0.7816    |
| pearson_manhattan  | 0.7809    |
| spearman_manhattan | 0.7847    |
| pearson_dot        | 0.7544    |
| spearman_dot       | 0.7435    |
| pearson_max        | 0.8224    |
| **spearman_max**   | **0.822** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 5,749 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 7 tokens</li><li>mean: 13.52 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 13.41 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.45</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                           | sentence2                                 | score             |
  |:------------------------------------|:------------------------------------------|:------------------|
  | <code>비행기가 이륙하고 있다.</code>          | <code>비행기가 이륙하고 있다.</code>                | <code>1.0</code>  |
  | <code>한 남자가 큰 플루트를 연주하고 있다.</code>  | <code>남자가 플루트를 연주하고 있다.</code>            | <code>0.76</code> |
  | <code>한 남자가 피자에 치즈를 뿌려놓고 있다.</code> | <code>한 남자가 구운 피자에 치즈 조각을 뿌려놓고 있다.</code> | <code>0.76</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset


* Size: 1,500 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence1                                                                         | sentence2                                                                         | score                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 7 tokens</li><li>mean: 20.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 20.52 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.42</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence1                            | sentence2                           | score             |
  |:-------------------------------------|:------------------------------------|:------------------|
  | <code>안전모를 가진 한 남자가 춤을 추고 있다.</code> | <code>안전모를 쓴 한 남자가 춤을 추고 있다.</code> | <code>1.0</code>  |
  | <code>어린아이가 말을 타고 있다.</code>         | <code>아이가 말을 타고 있다.</code>          | <code>0.95</code> |
  | <code>한 남자가 뱀에게 쥐를 먹이고 있다.</code>    | <code>남자가 뱀에게 쥐를 먹이고 있다.</code>     | <code>1.0</code>  |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `overwrite_output_dir`: True
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 8
- `learning_rate`: 1e-05
- `num_train_epochs`: 10.0
- `warmup_ratio`: 0.1
- `push_to_hub`: True
- `hub_model_id`: CocoRoF/ModernBERT-SimCSE-multitask_v03
- `hub_strategy`: checkpoint
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: True
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 1e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 10.0
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: True
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: True
- `resume_from_checkpoint`: None
- `hub_model_id`: CocoRoF/ModernBERT-SimCSE-multitask_v03
- `hub_strategy`: checkpoint
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | Validation Loss | sts_dev_spearman_max |
|:------:|:----:|:-------------:|:---------------:|:--------------------:|
| 0.2228 | 10   | 0.0283        | -               | -                    |
| 0.4457 | 20   | 0.0344        | -               | -                    |
| 0.6685 | 30   | 0.0305        | 0.0310          | 0.7939               |
| 0.8914 | 40   | 0.0489        | -               | -                    |
| 1.1337 | 50   | 0.0382        | -               | -                    |
| 1.3565 | 60   | 0.0271        | 0.0293          | 0.7994               |
| 1.5794 | 70   | 0.0344        | -               | -                    |
| 1.8022 | 80   | 0.0382        | -               | -                    |
| 2.0446 | 90   | 0.0419        | 0.0280          | 0.8059               |
| 2.2674 | 100  | 0.0244        | -               | -                    |
| 2.4903 | 110  | 0.0307        | -               | -                    |
| 2.7131 | 120  | 0.0291        | 0.0269          | 0.8108               |
| 2.9359 | 130  | 0.038         | -               | -                    |
| 3.1783 | 140  | 0.0269        | -               | -                    |
| 3.4011 | 150  | 0.0268        | 0.0262          | 0.8155               |
| 3.6240 | 160  | 0.0246        | -               | -                    |
| 3.8468 | 170  | 0.0313        | -               | -                    |
| 4.0891 | 180  | 0.0303        | 0.0259          | 0.8185               |
| 4.3120 | 190  | 0.0198        | -               | -                    |
| 4.5348 | 200  | 0.0257        | -               | -                    |
| 4.7577 | 210  | 0.0242        | 0.0255          | 0.8202               |
| 4.9805 | 220  | 0.0293        | -               | -                    |
| 5.2228 | 230  | 0.0193        | -               | -                    |
| 5.4457 | 240  | 0.0222        | 0.0254          | 0.8222               |
| 5.6685 | 250  | 0.0184        | -               | -                    |
| 5.8914 | 260  | 0.0243        | -               | -                    |
| 6.1337 | 270  | 0.0204        | 0.0254          | 0.8235               |
| 6.3565 | 280  | 0.0147        | -               | -                    |
| 6.5794 | 290  | 0.0196        | -               | -                    |
| 6.8022 | 300  | 0.0176        | 0.0253          | 0.8227               |
| 7.0446 | 310  | 0.0202        | -               | -                    |
| 7.2674 | 320  | 0.0123        | -               | -                    |
| 7.4903 | 330  | 0.0151        | 0.0254          | 0.8236               |
| 7.7131 | 340  | 0.0132        | -               | -                    |
| 7.9359 | 350  | 0.0158        | -               | -                    |
| 8.1783 | 360  | 0.0118        | 0.0256          | 0.8240               |
| 8.4011 | 370  | 0.0115        | -               | -                    |
| 8.6240 | 380  | 0.0105        | -               | -                    |
| 8.8468 | 390  | 0.0111        | 0.0256          | 0.8215               |
| 9.0891 | 400  | 0.011         | -               | -                    |
| 9.3120 | 410  | 0.0076        | -               | -                    |
| 9.5348 | 420  | 0.0091        | 0.0256          | 0.8220               |
| 9.7577 | 430  | 0.0075        | -               | -                    |
| 9.9805 | 440  | 0.0093        | -               | -                    |


### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.0
- Datasets: 3.1.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->