File size: 8,108 Bytes
41f97d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
import torch
import torch.nn.functional as F

import argparse
import os
import numpy as np
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
import wandb
import datetime
from torch.utils.data import DataLoader, TensorDataset
import torch.optim as optim

from data import load_multiple
from utils import compute_metrics_np
from contrastive import ContrastiveModule

def main(args):

    # load real data
    dataset_list = ['Opp_g','UCIHAR','MotionSense','w-HAR','Shoaib','har70plus','realworld','TNDA-HAR','PAMAP',\
                    'USCHAD','Mhealth','Harth','ut-complex','Wharf','WISDM','DSADS','UTD-MHAD','MMAct']
    train_inputs_list, train_masks_list, train_labels_list, label_list_list, all_text_list, num_classes_list = load_multiple(dataset_list, args.padding_size, args.data_path, split='train', k=args.k)
    test_inputs_list, test_masks_list, test_labels_list, label_list_list, all_text_list, _ = load_multiple(dataset_list, args.padding_size, args.data_path, split='test')
    train_dataloader_list, test_dataloader_list = [], []
    for real_inputs, real_masks, real_labels in zip(train_inputs_list, train_masks_list, train_labels_list):
        train_dataset = TensorDataset(real_inputs, real_masks, real_labels)
        train_dataloader_list.append(DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True))
    for real_inputs, real_masks, real_labels in zip(test_inputs_list, test_masks_list, test_labels_list):
        test_dataset = TensorDataset(real_inputs, real_masks, real_labels)
        test_dataloader_list.append(DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False))

    date = datetime.datetime.now().strftime("%d-%m-%y_%H:%M")
    wandb.init(
        project='UniMTS',
        name=f"{args.run_tag}_{args.stage}_{args.mode}_k={args.k}_" + f"{date}" 
    )

    save_path = './checkpoint/%s/' % args.run_tag

    for ds, train_dataloader, test_dataloader, test_labels, label_list, all_text, num_class in \
            zip(dataset_list, train_dataloader_list, test_dataloader_list, test_labels_list, label_list_list, all_text_list, num_classes_list):
        
        args.num_class = num_class
        model = ContrastiveModule(args).cuda()
        optimizer = optim.Adam(model.parameters(), lr=1e-4)

        if args.mode == 'full' or args.mode == 'probe':
            model.model.load_state_dict(torch.load(f'{args.checkpoint}'))
        if args.mode == 'probe':
            for name, param in model.model.named_parameters():
                param.requires_grad = False

        best_loss = None
        for epoch in range(args.num_epochs):

            tol_loss = 0
            
            model.train()
            for i, (input, mask, label) in enumerate(train_dataloader):

                input = input.cuda()
                labels = label.cuda()

                if not args.gyro:
                    b, t, c = input.shape
                    indices = np.array([range(i, i+3) for i in range(0, c, 6)]).flatten()
                    input = input[:,:,indices]

                b, t, c = input.shape
                if args.stft:
                    input_stft = input.permute(0,2,1).reshape(b * c,t)
                    input_stft = torch.abs(torch.stft(input_stft, n_fft = 25, hop_length = 28, onesided = False, center = True, return_complex = True))
                    input_stft = input_stft.reshape(b, c, input_stft.shape[-2], input_stft.shape[-1]).reshape(b, c, t).permute(0,2,1)
                    input = torch.cat((input, input_stft), dim=-1)

                input = input.reshape(b, t, 22, -1).permute(0, 3, 1, 2).unsqueeze(-1)
              
                output = model.classifier(input)
             
                loss = F.cross_entropy(output.float(), labels.long(), reduction="mean")
            
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()

                tol_loss += len(input) * loss.item()
            
                # print(epoch, i, loss.item())
            
            print(f'Epoch [{epoch+1}/{args.num_epochs}], Loss: {tol_loss / len(train_dataset):.4f}')
            wandb.log({'{ds} loss': tol_loss / len(train_dataset)})

            if best_loss is None or tol_loss < best_loss:
                best_loss = tol_loss
                torch.save(model.state_dict(), os.path.join(save_path, f'{ds}_k={args.k}_best_loss.pth'))

        # evaluation
        model.load_state_dict(torch.load(os.path.join(save_path, f'{ds}_k={args.k}_best_loss.pth')))
        model.eval()
        with torch.no_grad():

            pred_whole, logits_whole = [], []
            for input, mask, label in test_dataloader:
                
                input = input.cuda()
                label = label.cuda()

                if not args.gyro:
                    b, t, c = input.shape
                    indices = np.array([range(i, i+3) for i in range(0, c, 6)]).flatten()
                    input = input[:,:,indices]

                b, t, c = input.shape
                if args.stft:
                    input_stft = input.permute(0,2,1).reshape(b * c,t)
                    input_stft = torch.abs(torch.stft(input_stft, n_fft = 25, hop_length = 28, onesided = False, center = True, return_complex = True))
                    input_stft = input_stft.reshape(b, c, input_stft.shape[-2], input_stft.shape[-1]).reshape(b, c, t).permute(0,2,1)
                    input = torch.cat((input, input_stft), dim=-1)

                input = input.reshape(b, t, 22, -1).permute(0, 3, 1, 2).unsqueeze(-1)

                logits_per_imu = model.classifier(input)
                logits_whole.append(logits_per_imu)
                
                pred = torch.argmax(logits_per_imu, dim=-1).detach().cpu().numpy()
                pred_whole.append(pred)

            pred = np.concatenate(pred_whole)
            acc = accuracy_score(test_labels, pred)
            prec = precision_score(test_labels, pred, average='macro')
            rec = recall_score(test_labels, pred, average='macro')
            f1 = f1_score(test_labels, pred, average='macro')

            print(f"{ds} acc: {acc}, {ds} prec: {prec}, {ds} rec: {rec}, {ds} f1: {f1}")
            wandb.log({f"{ds} acc": acc, f"{ds} prec": prec, f"{ds} rec": rec, f"{ds} f1": f1})

            logits_whole = torch.cat(logits_whole)
            r_at_1, r_at_2, r_at_3, r_at_4, r_at_5, mrr_score = compute_metrics_np(logits_whole.detach().cpu().numpy(), test_labels.numpy())
                
            print(f"{ds} R@1: {r_at_1}, R@2: {r_at_2}, R@3: {r_at_3}, R@4: {r_at_4}, R@5: {r_at_5}, MRR: {mrr_score}")
            wandb.log({f"{ds} R@1": r_at_1, f"{ds} R@2": r_at_2, f"{ds} R@3": r_at_3, f"{ds} R@4": r_at_4, f"{ds} R@5": r_at_5, f"{ds} MRR": mrr_score}) 


if __name__ == "__main__":

    parser = argparse.ArgumentParser(description='Unified Pre-trained Motion Time Series Model')

    # model 
    parser.add_argument('--mode', type=str, default='full', choices=['random','probe','full'], help='full fine-tuning, linear probe, random init')

    # data
    parser.add_argument('--padding_size', type=int, default='200', help='padding size (default: 200)')
    parser.add_argument('--k', type=int, help='few shot samples per class (default: None)')
    parser.add_argument('--data_path', type=str, default='./data/', help='/path/to/data/')

    # training
    parser.add_argument('--stage', type=str, default='finetune', help='training stage')
    parser.add_argument('--num_epochs', type=int, default=200, help='number of fine-tuning epochs (default: 200)')
    parser.add_argument('--run_tag', type=str, default='exp0', help='logging tag')
    parser.add_argument('--gyro', type=int, default=0, help='using gyro or not')
    parser.add_argument('--stft', type=int, default=0, help='using stft or not')
    parser.add_argument('--batch_size', type=int, default=64, help='batch size')

    parser.add_argument('--checkpoint', type=str, default='./checkpoint/', help='/path/to/checkpoint/')
    
    args = parser.parse_args()

    main(args)