File size: 7,794 Bytes
41f97d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import numpy as np
import torch
import torch.nn.functional as F
import argparse
import os
import numpy as np
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
import wandb
import datetime
from torch.utils.data import DataLoader, TensorDataset
import torch.optim as optim
from data import load_multiple, load_custom_data
from utils import compute_metrics_np
from contrastive import ContrastiveModule
def main(args):
train_inputs, train_masks, train_labels, _, _ = load_custom_data(
args.X_train_path, args.y_train_path, args.config_path, args.joint_list, args.original_sampling_rate, padding_size=args.padding_size, split='train', k=args.k, few_shot_path=None
)
train_dataset = TensorDataset(train_inputs, train_masks, train_labels)
train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)
test_inputs, test_masks, test_labels, _, _ = load_custom_data(
args.X_test_path, args.y_test_path, args.config_path, args.joint_list, args.original_sampling_rate, padding_size=args.padding_size, split='test'
)
test_dataset = TensorDataset(test_inputs, test_masks, test_labels)
test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False)
date = datetime.datetime.now().strftime("%d-%m-%y_%H:%M")
wandb.init(
project='UniMTS',
name=f"{args.run_tag}_{args.stage}_{args.mode}_k={args.k}_" + f"{date}"
)
save_path = './checkpoint/%s/' % args.run_tag
model = ContrastiveModule(args).cuda()
optimizer = optim.Adam(model.parameters(), lr=1e-4)
if args.mode == 'full' or args.mode == 'probe':
model.model.load_state_dict(torch.load(f'{args.checkpoint}'))
if args.mode == 'probe':
for name, param in model.model.named_parameters():
param.requires_grad = False
best_loss = None
for epoch in range(args.num_epochs):
tol_loss = 0
model.train()
for i, (input, mask, label) in enumerate(train_dataloader):
input = input.cuda()
labels = label.cuda()
if not args.gyro:
b, t, c = input.shape
indices = np.array([range(i, i+3) for i in range(0, c, 6)]).flatten()
input = input[:,:,indices]
b, t, c = input.shape
if args.stft:
input_stft = input.permute(0,2,1).reshape(b * c,t)
input_stft = torch.abs(torch.stft(input_stft, n_fft = 25, hop_length = 28, onesided = False, center = True, return_complex = True))
input_stft = input_stft.reshape(b, c, input_stft.shape[-2], input_stft.shape[-1]).reshape(b, c, t).permute(0,2,1)
input = torch.cat((input, input_stft), dim=-1)
input = input.reshape(b, t, 22, -1).permute(0, 3, 1, 2).unsqueeze(-1)
output = model.classifier(input)
loss = F.cross_entropy(output.float(), labels.long(), reduction="mean")
optimizer.zero_grad()
loss.backward()
optimizer.step()
tol_loss += len(input) * loss.item()
# print(epoch, i, loss.item())
print(f'Epoch [{epoch+1}/{args.num_epochs}], Loss: {tol_loss / len(train_dataset):.4f}')
wandb.log({' loss': tol_loss / len(train_dataset)})
if best_loss is None or tol_loss < best_loss:
best_loss = tol_loss
torch.save(model.state_dict(), os.path.join(save_path, f'k={args.k}_best_loss.pth'))
# evaluation
model.load_state_dict(torch.load(os.path.join(save_path, f'k={args.k}_best_loss.pth')))
model.eval()
with torch.no_grad():
pred_whole, logits_whole = [], []
for input, mask, label in test_dataloader:
input = input.cuda()
label = label.cuda()
if not args.gyro:
b, t, c = input.shape
indices = np.array([range(i, i+3) for i in range(0, c, 6)]).flatten()
input = input[:,:,indices]
b, t, c = input.shape
if args.stft:
input_stft = input.permute(0,2,1).reshape(b * c,t)
input_stft = torch.abs(torch.stft(input_stft, n_fft = 25, hop_length = 28, onesided = False, center = True, return_complex = True))
input_stft = input_stft.reshape(b, c, input_stft.shape[-2], input_stft.shape[-1]).reshape(b, c, t).permute(0,2,1)
input = torch.cat((input, input_stft), dim=-1)
input = input.reshape(b, t, 22, -1).permute(0, 3, 1, 2).unsqueeze(-1)
logits_per_imu = model.classifier(input)
logits_whole.append(logits_per_imu)
pred = torch.argmax(logits_per_imu, dim=-1).detach().cpu().numpy()
pred_whole.append(pred)
pred = np.concatenate(pred_whole)
acc = accuracy_score(test_labels, pred)
prec = precision_score(test_labels, pred, average='macro')
rec = recall_score(test_labels, pred, average='macro')
f1 = f1_score(test_labels, pred, average='macro')
print(f"acc: {acc}, prec: {prec}, rec: {rec}, f1: {f1}")
wandb.log({f"acc": acc, f"prec": prec, f"rec": rec, f"f1": f1})
logits_whole = torch.cat(logits_whole)
r_at_1, r_at_2, r_at_3, r_at_4, r_at_5, mrr_score = compute_metrics_np(logits_whole.detach().cpu().numpy(), test_labels.numpy())
print(f"R@1: {r_at_1}, R@2: {r_at_2}, R@3: {r_at_3}, R@4: {r_at_4}, R@5: {r_at_5}, MRR: {mrr_score}")
wandb.log({f"R@1": r_at_1, f"R@2": r_at_2, f"R@3": r_at_3, f"R@4": r_at_4, f"R@5": r_at_5, f"MRR": mrr_score})
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Unified Pre-trained Motion Time Series Model')
# model
parser.add_argument('--mode', type=str, default='full', choices=['random','probe','full'], help='full fine-tuning, linear probe, random init')
# data
parser.add_argument('--padding_size', type=int, default='200', help='padding size (default: 200)')
parser.add_argument('--k', type=int, help='few shot samples per class (default: None)')
parser.add_argument('--X_train_path', type=str, required=True, help='/path/to/train/data/')
parser.add_argument('--X_test_path', type=str, required=True, help='/path/to/test/data/')
parser.add_argument('--y_train_path', type=str, required=True, help='/path/to/train/label/')
parser.add_argument('--y_test_path', type=str, required=True, help='/path/to/test/label/')
parser.add_argument('--config_path', type=str, required=True, help='/path/to/config/')
parser.add_argument('--few_shot_path', type=str, help='/path/to/few/shot/indices/')
parser.add_argument('--joint_list', nargs='+', type=int, required=True, help='List of joint indices')
parser.add_argument('--original_sampling_rate', type=int, required=True, help='original sampling rate')
parser.add_argument('--num_class', type=int, required=True, help='number of classes')
# training
parser.add_argument('--stage', type=str, default='finetune', help='training stage')
parser.add_argument('--num_epochs', type=int, default=200, help='number of fine-tuning epochs (default: 200)')
parser.add_argument('--run_tag', type=str, default='exp0', help='logging tag')
parser.add_argument('--gyro', type=int, default=0, help='using gyro or not')
parser.add_argument('--stft', type=int, default=0, help='using stft or not')
parser.add_argument('--batch_size', type=int, default=64, help='batch size')
parser.add_argument('--checkpoint', type=str, default='./checkpoint/', help='/path/to/checkpoint/')
args = parser.parse_args()
main(args)
|