File size: 7,794 Bytes
41f97d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import numpy as np
import torch
import torch.nn.functional as F

import argparse
import os
import numpy as np
from sklearn.metrics import f1_score, precision_score, recall_score, accuracy_score
import wandb
import datetime
from torch.utils.data import DataLoader, TensorDataset
import torch.optim as optim

from data import load_multiple, load_custom_data
from utils import compute_metrics_np
from contrastive import ContrastiveModule

def main(args):
    
    train_inputs, train_masks, train_labels, _, _ = load_custom_data(
        args.X_train_path, args.y_train_path, args.config_path, args.joint_list, args.original_sampling_rate, padding_size=args.padding_size, split='train', k=args.k, few_shot_path=None
    )
    train_dataset = TensorDataset(train_inputs, train_masks, train_labels)
    train_dataloader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True)

    test_inputs, test_masks, test_labels, _, _ = load_custom_data(
        args.X_test_path, args.y_test_path, args.config_path, args.joint_list, args.original_sampling_rate, padding_size=args.padding_size, split='test'
    )
    test_dataset = TensorDataset(test_inputs, test_masks, test_labels)
    test_dataloader = DataLoader(test_dataset, batch_size=args.batch_size, shuffle=False)

    date = datetime.datetime.now().strftime("%d-%m-%y_%H:%M")
    wandb.init(
        project='UniMTS',
        name=f"{args.run_tag}_{args.stage}_{args.mode}_k={args.k}_" + f"{date}" 
    )

    save_path = './checkpoint/%s/' % args.run_tag

    model = ContrastiveModule(args).cuda()
    optimizer = optim.Adam(model.parameters(), lr=1e-4)

    if args.mode == 'full' or args.mode == 'probe':
        model.model.load_state_dict(torch.load(f'{args.checkpoint}'))
    if args.mode == 'probe':
        for name, param in model.model.named_parameters():
            param.requires_grad = False
    
    best_loss = None
    for epoch in range(args.num_epochs):

        tol_loss = 0
        
        model.train()
        for i, (input, mask, label) in enumerate(train_dataloader):

            input = input.cuda()
            labels = label.cuda()

            if not args.gyro:
                b, t, c = input.shape
                indices = np.array([range(i, i+3) for i in range(0, c, 6)]).flatten()
                input = input[:,:,indices]

            b, t, c = input.shape
            if args.stft:
                input_stft = input.permute(0,2,1).reshape(b * c,t)
                input_stft = torch.abs(torch.stft(input_stft, n_fft = 25, hop_length = 28, onesided = False, center = True, return_complex = True))
                input_stft = input_stft.reshape(b, c, input_stft.shape[-2], input_stft.shape[-1]).reshape(b, c, t).permute(0,2,1)
                input = torch.cat((input, input_stft), dim=-1)

            input = input.reshape(b, t, 22, -1).permute(0, 3, 1, 2).unsqueeze(-1)
            
            output = model.classifier(input)
            
            loss = F.cross_entropy(output.float(), labels.long(), reduction="mean")
        
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            tol_loss += len(input) * loss.item()
        
            # print(epoch, i, loss.item())
        
        print(f'Epoch [{epoch+1}/{args.num_epochs}], Loss: {tol_loss / len(train_dataset):.4f}')
        wandb.log({' loss': tol_loss / len(train_dataset)})

        if best_loss is None or tol_loss < best_loss:
            best_loss = tol_loss
            torch.save(model.state_dict(), os.path.join(save_path, f'k={args.k}_best_loss.pth'))

    # evaluation
    model.load_state_dict(torch.load(os.path.join(save_path, f'k={args.k}_best_loss.pth')))
    model.eval()
    with torch.no_grad():

        pred_whole, logits_whole = [], []
        for input, mask, label in test_dataloader:
            
            input = input.cuda()
            label = label.cuda()

            if not args.gyro:
                b, t, c = input.shape
                indices = np.array([range(i, i+3) for i in range(0, c, 6)]).flatten()
                input = input[:,:,indices]

            b, t, c = input.shape
            if args.stft:
                input_stft = input.permute(0,2,1).reshape(b * c,t)
                input_stft = torch.abs(torch.stft(input_stft, n_fft = 25, hop_length = 28, onesided = False, center = True, return_complex = True))
                input_stft = input_stft.reshape(b, c, input_stft.shape[-2], input_stft.shape[-1]).reshape(b, c, t).permute(0,2,1)
                input = torch.cat((input, input_stft), dim=-1)

            input = input.reshape(b, t, 22, -1).permute(0, 3, 1, 2).unsqueeze(-1)

            logits_per_imu = model.classifier(input)
            logits_whole.append(logits_per_imu)
            
            pred = torch.argmax(logits_per_imu, dim=-1).detach().cpu().numpy()
            pred_whole.append(pred)

        pred = np.concatenate(pred_whole)
        acc = accuracy_score(test_labels, pred)
        prec = precision_score(test_labels, pred, average='macro')
        rec = recall_score(test_labels, pred, average='macro')
        f1 = f1_score(test_labels, pred, average='macro')

        print(f"acc: {acc}, prec: {prec}, rec: {rec}, f1: {f1}")
        wandb.log({f"acc": acc, f"prec": prec, f"rec": rec, f"f1": f1})

        logits_whole = torch.cat(logits_whole)
        r_at_1, r_at_2, r_at_3, r_at_4, r_at_5, mrr_score = compute_metrics_np(logits_whole.detach().cpu().numpy(), test_labels.numpy())
            
        print(f"R@1: {r_at_1}, R@2: {r_at_2}, R@3: {r_at_3}, R@4: {r_at_4}, R@5: {r_at_5}, MRR: {mrr_score}")
        wandb.log({f"R@1": r_at_1, f"R@2": r_at_2, f"R@3": r_at_3, f"R@4": r_at_4, f"R@5": r_at_5, f"MRR": mrr_score}) 


if __name__ == "__main__":

    parser = argparse.ArgumentParser(description='Unified Pre-trained Motion Time Series Model')

    # model 
    parser.add_argument('--mode', type=str, default='full', choices=['random','probe','full'], help='full fine-tuning, linear probe, random init')

    # data
    parser.add_argument('--padding_size', type=int, default='200', help='padding size (default: 200)')
    parser.add_argument('--k', type=int, help='few shot samples per class (default: None)')
    parser.add_argument('--X_train_path', type=str, required=True, help='/path/to/train/data/')
    parser.add_argument('--X_test_path', type=str, required=True, help='/path/to/test/data/')
    parser.add_argument('--y_train_path', type=str, required=True, help='/path/to/train/label/')
    parser.add_argument('--y_test_path', type=str, required=True, help='/path/to/test/label/')
    parser.add_argument('--config_path', type=str, required=True, help='/path/to/config/')
    parser.add_argument('--few_shot_path', type=str, help='/path/to/few/shot/indices/')
    parser.add_argument('--joint_list', nargs='+', type=int, required=True, help='List of joint indices')
    parser.add_argument('--original_sampling_rate', type=int, required=True, help='original sampling rate')
    parser.add_argument('--num_class', type=int, required=True, help='number of classes')

    # training
    parser.add_argument('--stage', type=str, default='finetune', help='training stage')
    parser.add_argument('--num_epochs', type=int, default=200, help='number of fine-tuning epochs (default: 200)')
    parser.add_argument('--run_tag', type=str, default='exp0', help='logging tag')
    parser.add_argument('--gyro', type=int, default=0, help='using gyro or not')
    parser.add_argument('--stft', type=int, default=0, help='using stft or not')
    parser.add_argument('--batch_size', type=int, default=64, help='batch size')

    parser.add_argument('--checkpoint', type=str, default='./checkpoint/', help='/path/to/checkpoint/')
    
    args = parser.parse_args()

    main(args)