xk-huang
commited on
Commit
·
91f9406
1
Parent(s):
20f2366
[add] model
Browse files- config.json +348 -0
- latest +1 -0
- merges.txt +0 -0
- pytorch_model.bin +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +6 -0
- tokenizer.json +0 -0
- tokenizer_config.json +9 -0
- trainer_state.json +1114 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +587 -0
config.json
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"_name_or_path": "/mnt/blob/projects/sca-xiaoke-v3/amlt-results/7301932201.25563-cd1e6021-6ea9-4835-8578-ba26f723a708/checkpoint-100000",
|
4 |
+
"architectures": [
|
5 |
+
"ScaMultitaskV2Model"
|
6 |
+
],
|
7 |
+
"cache_dir": "/mnt/blob/weights/.model.cache/",
|
8 |
+
"initializer_range": 0.02,
|
9 |
+
"mask_caption_decoder_config": {
|
10 |
+
"_name_or_path": "",
|
11 |
+
"add_cross_attention": false,
|
12 |
+
"additional_num_hidden_layers": 12,
|
13 |
+
"architectures": null,
|
14 |
+
"attention_downsample_rate": 2,
|
15 |
+
"bad_words_ids": null,
|
16 |
+
"begin_suppress_tokens": null,
|
17 |
+
"bos_token_id": null,
|
18 |
+
"chunk_size_feed_forward": 0,
|
19 |
+
"cross_attention_hidden_size": null,
|
20 |
+
"decoder_start_token_id": null,
|
21 |
+
"diversity_penalty": 0.0,
|
22 |
+
"do_sample": false,
|
23 |
+
"early_stopping": false,
|
24 |
+
"encoder_no_repeat_ngram_size": 0,
|
25 |
+
"eos_token_id": null,
|
26 |
+
"exponential_decay_length_penalty": null,
|
27 |
+
"finetuning_task": null,
|
28 |
+
"forced_bos_token_id": null,
|
29 |
+
"forced_eos_token_id": null,
|
30 |
+
"hidden_act": "relu",
|
31 |
+
"hidden_size": 256,
|
32 |
+
"id2label": {
|
33 |
+
"0": "LABEL_0",
|
34 |
+
"1": "LABEL_1"
|
35 |
+
},
|
36 |
+
"iou_head_depth": 3,
|
37 |
+
"iou_head_hidden_dim": 256,
|
38 |
+
"is_decoder": false,
|
39 |
+
"is_encoder_decoder": false,
|
40 |
+
"label2id": {
|
41 |
+
"LABEL_0": 0,
|
42 |
+
"LABEL_1": 1
|
43 |
+
},
|
44 |
+
"layer_norm_eps": 1e-06,
|
45 |
+
"length_penalty": 1.0,
|
46 |
+
"max_length": 20,
|
47 |
+
"min_length": 0,
|
48 |
+
"mlp_dim": 2048,
|
49 |
+
"model_type": "",
|
50 |
+
"no_repeat_ngram_size": 0,
|
51 |
+
"num_attention_heads": 8,
|
52 |
+
"num_beam_groups": 1,
|
53 |
+
"num_beams": 1,
|
54 |
+
"num_caption_heads": 1,
|
55 |
+
"num_caption_tokens": 8,
|
56 |
+
"num_hidden_layers": 2,
|
57 |
+
"num_multimask_outputs": 3,
|
58 |
+
"num_return_sequences": 1,
|
59 |
+
"output_attentions": false,
|
60 |
+
"output_hidden_states": false,
|
61 |
+
"output_scores": false,
|
62 |
+
"pad_token_id": null,
|
63 |
+
"prefix": null,
|
64 |
+
"problem_type": null,
|
65 |
+
"pruned_heads": {},
|
66 |
+
"remove_invalid_values": false,
|
67 |
+
"repetition_penalty": 1.0,
|
68 |
+
"return_dict": true,
|
69 |
+
"return_dict_in_generate": false,
|
70 |
+
"sep_token_id": null,
|
71 |
+
"suppress_tokens": null,
|
72 |
+
"task_specific_params": null,
|
73 |
+
"temperature": 1.0,
|
74 |
+
"tf_legacy_loss": false,
|
75 |
+
"tie_encoder_decoder": false,
|
76 |
+
"tie_word_embeddings": true,
|
77 |
+
"tokenizer_class": null,
|
78 |
+
"top_k": 50,
|
79 |
+
"top_p": 1.0,
|
80 |
+
"torch_dtype": null,
|
81 |
+
"torchscript": false,
|
82 |
+
"transformers_version": "4.30.2",
|
83 |
+
"typical_p": 1.0,
|
84 |
+
"use_bfloat16": false
|
85 |
+
},
|
86 |
+
"model_type": "sca",
|
87 |
+
"num_task_tokens": 6,
|
88 |
+
"prompt_encoder_config": {
|
89 |
+
"_name_or_path": "",
|
90 |
+
"add_cross_attention": false,
|
91 |
+
"architectures": null,
|
92 |
+
"bad_words_ids": null,
|
93 |
+
"begin_suppress_tokens": null,
|
94 |
+
"bos_token_id": null,
|
95 |
+
"chunk_size_feed_forward": 0,
|
96 |
+
"cross_attention_hidden_size": null,
|
97 |
+
"decoder_start_token_id": null,
|
98 |
+
"diversity_penalty": 0.0,
|
99 |
+
"do_sample": false,
|
100 |
+
"early_stopping": false,
|
101 |
+
"encoder_no_repeat_ngram_size": 0,
|
102 |
+
"eos_token_id": null,
|
103 |
+
"exponential_decay_length_penalty": null,
|
104 |
+
"finetuning_task": null,
|
105 |
+
"forced_bos_token_id": null,
|
106 |
+
"forced_eos_token_id": null,
|
107 |
+
"hidden_act": "gelu",
|
108 |
+
"hidden_size": 256,
|
109 |
+
"id2label": {
|
110 |
+
"0": "LABEL_0",
|
111 |
+
"1": "LABEL_1"
|
112 |
+
},
|
113 |
+
"image_embedding_size": 64,
|
114 |
+
"image_size": 1024,
|
115 |
+
"is_decoder": false,
|
116 |
+
"is_encoder_decoder": false,
|
117 |
+
"label2id": {
|
118 |
+
"LABEL_0": 0,
|
119 |
+
"LABEL_1": 1
|
120 |
+
},
|
121 |
+
"layer_norm_eps": 1e-06,
|
122 |
+
"length_penalty": 1.0,
|
123 |
+
"mask_input_channels": 16,
|
124 |
+
"max_length": 20,
|
125 |
+
"min_length": 0,
|
126 |
+
"model_type": "",
|
127 |
+
"no_repeat_ngram_size": 0,
|
128 |
+
"num_beam_groups": 1,
|
129 |
+
"num_beams": 1,
|
130 |
+
"num_point_embeddings": 4,
|
131 |
+
"num_return_sequences": 1,
|
132 |
+
"output_attentions": false,
|
133 |
+
"output_hidden_states": false,
|
134 |
+
"output_scores": false,
|
135 |
+
"pad_token_id": null,
|
136 |
+
"patch_size": 16,
|
137 |
+
"prefix": null,
|
138 |
+
"problem_type": null,
|
139 |
+
"pruned_heads": {},
|
140 |
+
"remove_invalid_values": false,
|
141 |
+
"repetition_penalty": 1.0,
|
142 |
+
"return_dict": true,
|
143 |
+
"return_dict_in_generate": false,
|
144 |
+
"sep_token_id": null,
|
145 |
+
"suppress_tokens": null,
|
146 |
+
"task_specific_params": null,
|
147 |
+
"temperature": 1.0,
|
148 |
+
"tf_legacy_loss": false,
|
149 |
+
"tie_encoder_decoder": false,
|
150 |
+
"tie_word_embeddings": true,
|
151 |
+
"tokenizer_class": null,
|
152 |
+
"top_k": 50,
|
153 |
+
"top_p": 1.0,
|
154 |
+
"torch_dtype": null,
|
155 |
+
"torchscript": false,
|
156 |
+
"transformers_version": "4.30.2",
|
157 |
+
"typical_p": 1.0,
|
158 |
+
"use_bfloat16": false
|
159 |
+
},
|
160 |
+
"text_config": {
|
161 |
+
"_name_or_path": "gpt2-large",
|
162 |
+
"activation_function": "gelu_new",
|
163 |
+
"add_cross_attention": false,
|
164 |
+
"architectures": [
|
165 |
+
"GPT2LMHeadModel"
|
166 |
+
],
|
167 |
+
"attn_pdrop": 0.1,
|
168 |
+
"bad_words_ids": null,
|
169 |
+
"begin_suppress_tokens": null,
|
170 |
+
"bos_token_id": 50256,
|
171 |
+
"chunk_size_feed_forward": 0,
|
172 |
+
"cross_attention_hidden_size": null,
|
173 |
+
"decoder_start_token_id": null,
|
174 |
+
"diversity_penalty": 0.0,
|
175 |
+
"do_sample": false,
|
176 |
+
"early_stopping": false,
|
177 |
+
"embd_pdrop": 0.1,
|
178 |
+
"encoder_no_repeat_ngram_size": 0,
|
179 |
+
"eos_token_id": 50256,
|
180 |
+
"exponential_decay_length_penalty": null,
|
181 |
+
"finetuning_task": null,
|
182 |
+
"forced_bos_token_id": null,
|
183 |
+
"forced_eos_token_id": null,
|
184 |
+
"id2label": {
|
185 |
+
"0": "LABEL_0",
|
186 |
+
"1": "LABEL_1"
|
187 |
+
},
|
188 |
+
"initializer_range": 0.02,
|
189 |
+
"is_decoder": false,
|
190 |
+
"is_encoder_decoder": false,
|
191 |
+
"label2id": {
|
192 |
+
"LABEL_0": 0,
|
193 |
+
"LABEL_1": 1
|
194 |
+
},
|
195 |
+
"layer_norm_epsilon": 1e-05,
|
196 |
+
"length_penalty": 1.0,
|
197 |
+
"max_length": 20,
|
198 |
+
"min_length": 0,
|
199 |
+
"model_type": "gpt2",
|
200 |
+
"n_ctx": 1024,
|
201 |
+
"n_embd": 1280,
|
202 |
+
"n_head": 20,
|
203 |
+
"n_inner": null,
|
204 |
+
"n_layer": 36,
|
205 |
+
"n_positions": 1024,
|
206 |
+
"no_repeat_ngram_size": 0,
|
207 |
+
"num_beam_groups": 1,
|
208 |
+
"num_beams": 1,
|
209 |
+
"num_return_sequences": 1,
|
210 |
+
"output_attentions": false,
|
211 |
+
"output_hidden_states": false,
|
212 |
+
"output_scores": false,
|
213 |
+
"pad_token_id": null,
|
214 |
+
"prefix": null,
|
215 |
+
"problem_type": null,
|
216 |
+
"pruned_heads": {},
|
217 |
+
"remove_invalid_values": false,
|
218 |
+
"reorder_and_upcast_attn": false,
|
219 |
+
"repetition_penalty": 1.0,
|
220 |
+
"resid_pdrop": 0.1,
|
221 |
+
"return_dict": true,
|
222 |
+
"return_dict_in_generate": false,
|
223 |
+
"scale_attn_by_inverse_layer_idx": false,
|
224 |
+
"scale_attn_weights": true,
|
225 |
+
"sep_token_id": null,
|
226 |
+
"summary_activation": null,
|
227 |
+
"summary_first_dropout": 0.1,
|
228 |
+
"summary_proj_to_labels": true,
|
229 |
+
"summary_type": "cls_index",
|
230 |
+
"summary_use_proj": true,
|
231 |
+
"suppress_tokens": null,
|
232 |
+
"task_specific_params": {
|
233 |
+
"text-generation": {
|
234 |
+
"do_sample": true,
|
235 |
+
"max_length": 50
|
236 |
+
}
|
237 |
+
},
|
238 |
+
"temperature": 1.0,
|
239 |
+
"tf_legacy_loss": false,
|
240 |
+
"tie_encoder_decoder": false,
|
241 |
+
"tie_word_embeddings": true,
|
242 |
+
"tokenizer_class": null,
|
243 |
+
"top_k": 50,
|
244 |
+
"top_p": 1.0,
|
245 |
+
"torch_dtype": null,
|
246 |
+
"torchscript": false,
|
247 |
+
"transformers_version": "4.30.2",
|
248 |
+
"typical_p": 1.0,
|
249 |
+
"use_bfloat16": false,
|
250 |
+
"use_cache": true,
|
251 |
+
"vocab_size": 50257
|
252 |
+
},
|
253 |
+
"torch_dtype": "float16",
|
254 |
+
"transformers_version": null,
|
255 |
+
"use_decoder_only_language_model": true,
|
256 |
+
"vision_config": {
|
257 |
+
"_name_or_path": "",
|
258 |
+
"add_cross_attention": false,
|
259 |
+
"architectures": null,
|
260 |
+
"attention_dropout": 0.0,
|
261 |
+
"bad_words_ids": null,
|
262 |
+
"begin_suppress_tokens": null,
|
263 |
+
"bos_token_id": null,
|
264 |
+
"chunk_size_feed_forward": 0,
|
265 |
+
"cross_attention_hidden_size": null,
|
266 |
+
"decoder_start_token_id": null,
|
267 |
+
"diversity_penalty": 0.0,
|
268 |
+
"do_sample": false,
|
269 |
+
"dropout": 0.0,
|
270 |
+
"early_stopping": false,
|
271 |
+
"encoder_no_repeat_ngram_size": 0,
|
272 |
+
"eos_token_id": null,
|
273 |
+
"exponential_decay_length_penalty": null,
|
274 |
+
"finetuning_task": null,
|
275 |
+
"forced_bos_token_id": null,
|
276 |
+
"forced_eos_token_id": null,
|
277 |
+
"global_attn_indexes": [
|
278 |
+
7,
|
279 |
+
15,
|
280 |
+
23,
|
281 |
+
31
|
282 |
+
],
|
283 |
+
"hidden_act": "gelu",
|
284 |
+
"hidden_size": 1280,
|
285 |
+
"id2label": {
|
286 |
+
"0": "LABEL_0",
|
287 |
+
"1": "LABEL_1"
|
288 |
+
},
|
289 |
+
"image_size": 1024,
|
290 |
+
"initializer_factor": 1.0,
|
291 |
+
"initializer_range": 1e-10,
|
292 |
+
"intermediate_size": 6144,
|
293 |
+
"is_decoder": false,
|
294 |
+
"is_encoder_decoder": false,
|
295 |
+
"label2id": {
|
296 |
+
"LABEL_0": 0,
|
297 |
+
"LABEL_1": 1
|
298 |
+
},
|
299 |
+
"layer_norm_eps": 1e-06,
|
300 |
+
"length_penalty": 1.0,
|
301 |
+
"max_length": 20,
|
302 |
+
"min_length": 0,
|
303 |
+
"mlp_dim": 5120,
|
304 |
+
"mlp_ratio": 4.0,
|
305 |
+
"model_type": "",
|
306 |
+
"no_repeat_ngram_size": 0,
|
307 |
+
"num_attention_heads": 16,
|
308 |
+
"num_beam_groups": 1,
|
309 |
+
"num_beams": 1,
|
310 |
+
"num_channels": 3,
|
311 |
+
"num_hidden_layers": 32,
|
312 |
+
"num_pos_feats": 128,
|
313 |
+
"num_return_sequences": 1,
|
314 |
+
"output_attentions": false,
|
315 |
+
"output_channels": 256,
|
316 |
+
"output_hidden_states": false,
|
317 |
+
"output_scores": false,
|
318 |
+
"pad_token_id": null,
|
319 |
+
"patch_size": 16,
|
320 |
+
"prefix": null,
|
321 |
+
"problem_type": null,
|
322 |
+
"projection_dim": 512,
|
323 |
+
"pruned_heads": {},
|
324 |
+
"qkv_bias": true,
|
325 |
+
"remove_invalid_values": false,
|
326 |
+
"repetition_penalty": 1.0,
|
327 |
+
"return_dict": true,
|
328 |
+
"return_dict_in_generate": false,
|
329 |
+
"sep_token_id": null,
|
330 |
+
"suppress_tokens": null,
|
331 |
+
"task_specific_params": null,
|
332 |
+
"temperature": 1.0,
|
333 |
+
"tf_legacy_loss": false,
|
334 |
+
"tie_encoder_decoder": false,
|
335 |
+
"tie_word_embeddings": true,
|
336 |
+
"tokenizer_class": null,
|
337 |
+
"top_k": 50,
|
338 |
+
"top_p": 1.0,
|
339 |
+
"torch_dtype": null,
|
340 |
+
"torchscript": false,
|
341 |
+
"transformers_version": "4.30.2",
|
342 |
+
"typical_p": 1.0,
|
343 |
+
"use_abs_pos": true,
|
344 |
+
"use_bfloat16": false,
|
345 |
+
"use_rel_pos": true,
|
346 |
+
"window_size": 14
|
347 |
+
}
|
348 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step100000
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7dad9b4488cb0f24a886335ef688f581d297aa197cdeb8f86b846632fb3b84c4
|
3 |
+
size 2998190351
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b4c32ad7d0088ddbc3f33294a653ba49926997db934e9fe5a3a60a180b1895e
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<|endoftext|>",
|
3 |
+
"eos_token": "<|endoftext|>",
|
4 |
+
"pad_token": "<|endoftext|>",
|
5 |
+
"unk_token": "<|endoftext|>"
|
6 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": "<|endoftext|>",
|
4 |
+
"clean_up_tokenization_spaces": true,
|
5 |
+
"eos_token": "<|endoftext|>",
|
6 |
+
"model_max_length": 20,
|
7 |
+
"tokenizer_class": "GPT2Tokenizer",
|
8 |
+
"unk_token": "<|endoftext|>"
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 3.5546064376831055,
|
3 |
+
"best_model_checkpoint": "//amltff6de91c1707b018e950147da959e142/projects/sca-xiaoke-v3/amlt-results/7300230113.98638-a536a63f-7921-4c0f-a350-97817c95c30d/checkpoint-90000",
|
4 |
+
"epoch": 82.64462809917356,
|
5 |
+
"global_step": 100000,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"_prepare_inputs_in_ms": 27.127794979605824,
|
12 |
+
"compute_loss_in_ms": 1811.1886270344257,
|
13 |
+
"epoch": 0.0,
|
14 |
+
"learning_rate/full": 0.0,
|
15 |
+
"loss": 7.5531,
|
16 |
+
"step": 1,
|
17 |
+
"training_step_in_ms": 2240.9718980197795
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.0,
|
21 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 7.401121139526367,
|
22 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.029569745772319803,
|
23 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 83.1742,
|
24 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 9.618,
|
25 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.301,
|
26 |
+
"step": 1
|
27 |
+
},
|
28 |
+
{
|
29 |
+
"_prepare_inputs_in_ms": 9.555798228632284,
|
30 |
+
"compute_loss_in_ms": 536.5458341809833,
|
31 |
+
"epoch": 0.83,
|
32 |
+
"learning_rate/full": 0.0003999392508508148,
|
33 |
+
"loss": 4.3937,
|
34 |
+
"step": 1000,
|
35 |
+
"training_step_in_ms": 946.2872614599979
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"_prepare_inputs_in_ms": 9.661823262518737,
|
39 |
+
"compute_loss_in_ms": 537.3916240136023,
|
40 |
+
"epoch": 1.65,
|
41 |
+
"learning_rate/full": 0.00039968541343111914,
|
42 |
+
"loss": 4.0494,
|
43 |
+
"step": 2000,
|
44 |
+
"training_step_in_ms": 955.0557815724169
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"_prepare_inputs_in_ms": 9.627924977685325,
|
48 |
+
"compute_loss_in_ms": 537.9465775624267,
|
49 |
+
"epoch": 2.48,
|
50 |
+
"learning_rate/full": 0.0003992346658781257,
|
51 |
+
"loss": 3.9791,
|
52 |
+
"step": 3000,
|
53 |
+
"training_step_in_ms": 958.343352012278
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"_prepare_inputs_in_ms": 9.754187489685137,
|
57 |
+
"compute_loss_in_ms": 538.0461517369258,
|
58 |
+
"epoch": 3.31,
|
59 |
+
"learning_rate/full": 0.0003985858034191765,
|
60 |
+
"loss": 3.9371,
|
61 |
+
"step": 4000,
|
62 |
+
"training_step_in_ms": 961.1277512954548
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"_prepare_inputs_in_ms": 9.712934053619392,
|
66 |
+
"compute_loss_in_ms": 537.9799637984834,
|
67 |
+
"epoch": 4.13,
|
68 |
+
"learning_rate/full": 0.0003977411181848781,
|
69 |
+
"loss": 3.9065,
|
70 |
+
"step": 5000,
|
71 |
+
"training_step_in_ms": 954.7033457334619
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 4.13,
|
75 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.763737201690674,
|
76 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.23929773235608354,
|
77 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 102.1516,
|
78 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.831,
|
79 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.245,
|
80 |
+
"step": 5000
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"_prepare_inputs_in_ms": 9.484028106941501,
|
84 |
+
"compute_loss_in_ms": 535.8051792999613,
|
85 |
+
"epoch": 4.96,
|
86 |
+
"learning_rate/full": 0.0003966997561999938,
|
87 |
+
"loss": 3.8844,
|
88 |
+
"step": 6000,
|
89 |
+
"training_step_in_ms": 946.6810292407754
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"_prepare_inputs_in_ms": 9.555567614093889,
|
93 |
+
"compute_loss_in_ms": 537.8309749438195,
|
94 |
+
"epoch": 5.79,
|
95 |
+
"learning_rate/full": 0.000395466162801616,
|
96 |
+
"loss": 3.8646,
|
97 |
+
"step": 7000,
|
98 |
+
"training_step_in_ms": 956.3491519849049
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"_prepare_inputs_in_ms": 9.571906232624315,
|
102 |
+
"compute_loss_in_ms": 535.8670682059601,
|
103 |
+
"epoch": 6.61,
|
104 |
+
"learning_rate/full": 0.0003940366164283571,
|
105 |
+
"loss": 3.8482,
|
106 |
+
"step": 8000,
|
107 |
+
"training_step_in_ms": 955.7397421186324
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"_prepare_inputs_in_ms": 9.494116805610247,
|
111 |
+
"compute_loss_in_ms": 535.7246166499099,
|
112 |
+
"epoch": 7.44,
|
113 |
+
"learning_rate/full": 0.0003924165284571268,
|
114 |
+
"loss": 3.8329,
|
115 |
+
"step": 9000,
|
116 |
+
"training_step_in_ms": 956.2797198233311
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"_prepare_inputs_in_ms": 9.442963820649311,
|
120 |
+
"compute_loss_in_ms": 535.982440788066,
|
121 |
+
"epoch": 8.26,
|
122 |
+
"learning_rate/full": 0.00039060426098193074,
|
123 |
+
"loss": 3.8234,
|
124 |
+
"step": 10000,
|
125 |
+
"training_step_in_ms": 960.6822794212494
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 8.26,
|
129 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.69438099861145,
|
130 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.24724186480974675,
|
131 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 99.2464,
|
132 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 8.061,
|
133 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.252,
|
134 |
+
"step": 10000
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"_prepare_inputs_in_ms": 9.298451105870942,
|
138 |
+
"compute_loss_in_ms": 533.8574210923398,
|
139 |
+
"epoch": 9.09,
|
140 |
+
"learning_rate/full": 0.00038860732494287416,
|
141 |
+
"loss": 3.8075,
|
142 |
+
"step": 11000,
|
143 |
+
"training_step_in_ms": 953.7077538485173
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"_prepare_inputs_in_ms": 9.43831800215412,
|
147 |
+
"compute_loss_in_ms": 534.8986968573299,
|
148 |
+
"epoch": 9.92,
|
149 |
+
"learning_rate/full": 0.0003864196958913291,
|
150 |
+
"loss": 3.8011,
|
151 |
+
"step": 12000,
|
152 |
+
"training_step_in_ms": 952.7247995454236
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"_prepare_inputs_in_ms": 9.553659793222323,
|
156 |
+
"compute_loss_in_ms": 535.9662136517582,
|
157 |
+
"epoch": 10.74,
|
158 |
+
"learning_rate/full": 0.0003840498188962311,
|
159 |
+
"loss": 3.7873,
|
160 |
+
"step": 13000,
|
161 |
+
"training_step_in_ms": 957.1981301900814
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"_prepare_inputs_in_ms": 9.344144803879317,
|
165 |
+
"compute_loss_in_ms": 535.5388605375774,
|
166 |
+
"epoch": 11.57,
|
167 |
+
"learning_rate/full": 0.0003814979428002389,
|
168 |
+
"loss": 3.7786,
|
169 |
+
"step": 14000,
|
170 |
+
"training_step_in_ms": 959.83031323459
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"_prepare_inputs_in_ms": 9.39019125822233,
|
174 |
+
"compute_loss_in_ms": 536.7152543000993,
|
175 |
+
"epoch": 12.4,
|
176 |
+
"learning_rate/full": 0.00037876659104596076,
|
177 |
+
"loss": 3.7703,
|
178 |
+
"step": 15000,
|
179 |
+
"training_step_in_ms": 961.1087728133425
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 12.4,
|
183 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.6609387397766113,
|
184 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.2538100106775413,
|
185 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 103.2498,
|
186 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.748,
|
187 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.242,
|
188 |
+
"step": 15000
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"_prepare_inputs_in_ms": 9.56299589696999,
|
192 |
+
"compute_loss_in_ms": 535.2517742190976,
|
193 |
+
"epoch": 13.22,
|
194 |
+
"learning_rate/full": 0.00037585846455191155,
|
195 |
+
"loss": 3.7622,
|
196 |
+
"step": 16000,
|
197 |
+
"training_step_in_ms": 952.1916261643055
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"_prepare_inputs_in_ms": 9.559556159831118,
|
201 |
+
"compute_loss_in_ms": 535.5560795084457,
|
202 |
+
"epoch": 14.05,
|
203 |
+
"learning_rate/full": 0.00037277643904168816,
|
204 |
+
"loss": 3.7606,
|
205 |
+
"step": 17000,
|
206 |
+
"training_step_in_ms": 957.2516361214803
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"_prepare_inputs_in_ms": 9.455631462449674,
|
210 |
+
"compute_loss_in_ms": 535.3892399296165,
|
211 |
+
"epoch": 14.88,
|
212 |
+
"learning_rate/full": 0.0003695235622002878,
|
213 |
+
"loss": 3.749,
|
214 |
+
"step": 18000,
|
215 |
+
"training_step_in_ms": 953.2538345798966
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"_prepare_inputs_in_ms": 9.365507787151728,
|
219 |
+
"compute_loss_in_ms": 535.8022946891142,
|
220 |
+
"epoch": 15.7,
|
221 |
+
"learning_rate/full": 0.00036609954385629034,
|
222 |
+
"loss": 3.7464,
|
223 |
+
"step": 19000,
|
224 |
+
"training_step_in_ms": 959.837038420781
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"_prepare_inputs_in_ms": 9.457632376637775,
|
228 |
+
"compute_loss_in_ms": 535.8551492407569,
|
229 |
+
"epoch": 16.53,
|
230 |
+
"learning_rate/full": 0.00036251461734986354,
|
231 |
+
"loss": 3.7357,
|
232 |
+
"step": 20000,
|
233 |
+
"training_step_in_ms": 960.2882608400541
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 16.53,
|
237 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.6332855224609375,
|
238 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.26106709230289454,
|
239 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 103.6434,
|
240 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.719,
|
241 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.241,
|
242 |
+
"step": 20000
|
243 |
+
},
|
244 |
+
{
|
245 |
+
"_prepare_inputs_in_ms": 9.350896289958278,
|
246 |
+
"compute_loss_in_ms": 534.3410268089501,
|
247 |
+
"epoch": 17.36,
|
248 |
+
"learning_rate/full": 0.0003587689869947874,
|
249 |
+
"loss": 3.7335,
|
250 |
+
"step": 21000,
|
251 |
+
"training_step_in_ms": 951.9007690685103
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"_prepare_inputs_in_ms": 9.444510843255557,
|
255 |
+
"compute_loss_in_ms": 536.0995619180612,
|
256 |
+
"epoch": 18.18,
|
257 |
+
"learning_rate/full": 0.0003548663566868928,
|
258 |
+
"loss": 3.726,
|
259 |
+
"step": 22000,
|
260 |
+
"training_step_in_ms": 959.7129821323324
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"_prepare_inputs_in_ms": 9.432463558274321,
|
264 |
+
"compute_loss_in_ms": 535.7645625439472,
|
265 |
+
"epoch": 19.01,
|
266 |
+
"learning_rate/full": 0.00035081058557264036,
|
267 |
+
"loss": 3.7237,
|
268 |
+
"step": 23000,
|
269 |
+
"training_step_in_ms": 963.4282936626696
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"_prepare_inputs_in_ms": 9.293582127720583,
|
273 |
+
"compute_loss_in_ms": 535.7767343233572,
|
274 |
+
"epoch": 19.83,
|
275 |
+
"learning_rate/full": 0.00034660568423297317,
|
276 |
+
"loss": 3.7142,
|
277 |
+
"step": 24000,
|
278 |
+
"training_step_in_ms": 953.5687257153331
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"_prepare_inputs_in_ms": 9.35004804620985,
|
282 |
+
"compute_loss_in_ms": 537.011823366629,
|
283 |
+
"epoch": 20.66,
|
284 |
+
"learning_rate/full": 0.00034225581071742215,
|
285 |
+
"loss": 3.7071,
|
286 |
+
"step": 25000,
|
287 |
+
"training_step_in_ms": 957.869783453003
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 20.66,
|
291 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.6175005435943604,
|
292 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.26405073790614886,
|
293 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 104.9682,
|
294 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.621,
|
295 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.238,
|
296 |
+
"step": 25000
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"_prepare_inputs_in_ms": 9.984895624163583,
|
300 |
+
"compute_loss_in_ms": 534.7242227215902,
|
301 |
+
"epoch": 21.49,
|
302 |
+
"learning_rate/full": 0.0003377607023892813,
|
303 |
+
"loss": 3.7083,
|
304 |
+
"step": 26000,
|
305 |
+
"training_step_in_ms": 955.9584859979805
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"_prepare_inputs_in_ms": 10.137336196319666,
|
309 |
+
"compute_loss_in_ms": 535.9911008346826,
|
310 |
+
"epoch": 22.31,
|
311 |
+
"learning_rate/full": 0.00033313379374801615,
|
312 |
+
"loss": 3.7022,
|
313 |
+
"step": 27000,
|
314 |
+
"training_step_in_ms": 965.8537974991486
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"_prepare_inputs_in_ms": 10.160301688476466,
|
318 |
+
"compute_loss_in_ms": 536.8555397295277,
|
319 |
+
"epoch": 23.14,
|
320 |
+
"learning_rate/full": 0.0003283704069974003,
|
321 |
+
"loss": 3.7009,
|
322 |
+
"step": 28000,
|
323 |
+
"training_step_in_ms": 961.128851325775
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"_prepare_inputs_in_ms": 10.110118357348256,
|
327 |
+
"compute_loss_in_ms": 536.1848762420123,
|
328 |
+
"epoch": 23.97,
|
329 |
+
"learning_rate/full": 0.0003234847784387827,
|
330 |
+
"loss": 3.6952,
|
331 |
+
"step": 29000,
|
332 |
+
"training_step_in_ms": 951.6901445918484
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"_prepare_inputs_in_ms": 10.067090163414832,
|
336 |
+
"compute_loss_in_ms": 535.8437895118841,
|
337 |
+
"epoch": 24.79,
|
338 |
+
"learning_rate/full": 0.0003184770409925566,
|
339 |
+
"loss": 3.6897,
|
340 |
+
"step": 30000,
|
341 |
+
"training_step_in_ms": 964.9359193513519
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 24.79,
|
345 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.603607416152954,
|
346 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.26295626788132803,
|
347 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 101.4282,
|
348 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.887,
|
349 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.246,
|
350 |
+
"step": 30000
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"_prepare_inputs_in_ms": 10.085794753678961,
|
354 |
+
"compute_loss_in_ms": 535.1409671568545,
|
355 |
+
"epoch": 25.62,
|
356 |
+
"learning_rate/full": 0.00031335214659900727,
|
357 |
+
"loss": 3.6866,
|
358 |
+
"step": 31000,
|
359 |
+
"training_step_in_ms": 961.3275795525988
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"_prepare_inputs_in_ms": 10.185186771384906,
|
363 |
+
"compute_loss_in_ms": 536.1119842829066,
|
364 |
+
"epoch": 26.45,
|
365 |
+
"learning_rate/full": 0.0003081098663889108,
|
366 |
+
"loss": 3.6829,
|
367 |
+
"step": 32000,
|
368 |
+
"training_step_in_ms": 963.5977011280484
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"_prepare_inputs_in_ms": 10.249891238170676,
|
372 |
+
"compute_loss_in_ms": 535.0950576688629,
|
373 |
+
"epoch": 27.27,
|
374 |
+
"learning_rate/full": 0.0003027712689775676,
|
375 |
+
"loss": 3.6771,
|
376 |
+
"step": 33000,
|
377 |
+
"training_step_in_ms": 955.397748134099
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"_prepare_inputs_in_ms": 10.17424620629754,
|
381 |
+
"compute_loss_in_ms": 534.6862363539985,
|
382 |
+
"epoch": 28.1,
|
383 |
+
"learning_rate/full": 0.0002973202486383942,
|
384 |
+
"loss": 3.672,
|
385 |
+
"step": 34000,
|
386 |
+
"training_step_in_ms": 958.4871930885711
|
387 |
+
},
|
388 |
+
{
|
389 |
+
"_prepare_inputs_in_ms": 10.059338139777537,
|
390 |
+
"compute_loss_in_ms": 535.8044806576218,
|
391 |
+
"epoch": 28.93,
|
392 |
+
"learning_rate/full": 0.000291778393459607,
|
393 |
+
"loss": 3.6714,
|
394 |
+
"step": 35000,
|
395 |
+
"training_step_in_ms": 956.3396593880607
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 28.93,
|
399 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.590414524078369,
|
400 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.26513770557999966,
|
401 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 104.3253,
|
402 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.668,
|
403 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.24,
|
404 |
+
"step": 35000
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"_prepare_inputs_in_ms": 10.062245466610099,
|
408 |
+
"compute_loss_in_ms": 534.5042656344594,
|
409 |
+
"epoch": 29.75,
|
410 |
+
"learning_rate/full": 0.0002861457824996332,
|
411 |
+
"loss": 3.6645,
|
412 |
+
"step": 36000,
|
413 |
+
"training_step_in_ms": 959.2977655951399
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"_prepare_inputs_in_ms": 10.064813164470252,
|
417 |
+
"compute_loss_in_ms": 536.1598941528937,
|
418 |
+
"epoch": 30.58,
|
419 |
+
"learning_rate/full": 0.00028042798560981287,
|
420 |
+
"loss": 3.6574,
|
421 |
+
"step": 37000,
|
422 |
+
"training_step_in_ms": 956.0697433989844
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"_prepare_inputs_in_ms": 10.116965677938424,
|
426 |
+
"compute_loss_in_ms": 536.2070164434845,
|
427 |
+
"epoch": 31.4,
|
428 |
+
"learning_rate/full": 0.0002746248158102387,
|
429 |
+
"loss": 3.6578,
|
430 |
+
"step": 38000,
|
431 |
+
"training_step_in_ms": 956.2041009759996
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"_prepare_inputs_in_ms": 10.094019736570772,
|
435 |
+
"compute_loss_in_ms": 535.4710150305182,
|
436 |
+
"epoch": 32.23,
|
437 |
+
"learning_rate/full": 0.0002687536169947349,
|
438 |
+
"loss": 3.6524,
|
439 |
+
"step": 39000,
|
440 |
+
"training_step_in_ms": 959.96617779386
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"_prepare_inputs_in_ms": 10.109433323028497,
|
444 |
+
"compute_loss_in_ms": 535.6941579723498,
|
445 |
+
"epoch": 33.06,
|
446 |
+
"learning_rate/full": 0.0002628144306280816,
|
447 |
+
"loss": 3.6524,
|
448 |
+
"step": 40000,
|
449 |
+
"training_step_in_ms": 961.5450095872511
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 33.06,
|
453 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.580965280532837,
|
454 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.2693198298047019,
|
455 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 99.8174,
|
456 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 8.015,
|
457 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.25,
|
458 |
+
"step": 40000
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"_prepare_inputs_in_ms": 10.042415707621997,
|
462 |
+
"compute_loss_in_ms": 535.0675269728526,
|
463 |
+
"epoch": 33.88,
|
464 |
+
"learning_rate/full": 0.000256813129721104,
|
465 |
+
"loss": 3.6463,
|
466 |
+
"step": 41000,
|
467 |
+
"training_step_in_ms": 951.0752835389576
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"_prepare_inputs_in_ms": 10.117303489823826,
|
471 |
+
"compute_loss_in_ms": 535.5392771296902,
|
472 |
+
"epoch": 34.71,
|
473 |
+
"learning_rate/full": 0.00025076173835033525,
|
474 |
+
"loss": 3.6408,
|
475 |
+
"step": 42000,
|
476 |
+
"training_step_in_ms": 959.7704490462202
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"_prepare_inputs_in_ms": 10.175786619714927,
|
480 |
+
"compute_loss_in_ms": 536.3846810262767,
|
481 |
+
"epoch": 35.54,
|
482 |
+
"learning_rate/full": 0.0002446479775734085,
|
483 |
+
"loss": 3.6381,
|
484 |
+
"step": 43000,
|
485 |
+
"training_step_in_ms": 963.5900993177202
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"_prepare_inputs_in_ms": 10.058058980386704,
|
489 |
+
"compute_loss_in_ms": 535.5972880260088,
|
490 |
+
"epoch": 36.36,
|
491 |
+
"learning_rate/full": 0.00023849615593840492,
|
492 |
+
"loss": 3.6361,
|
493 |
+
"step": 44000,
|
494 |
+
"training_step_in_ms": 966.5910823547165
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"_prepare_inputs_in_ms": 10.140807795512956,
|
498 |
+
"compute_loss_in_ms": 535.745742837491,
|
499 |
+
"epoch": 37.19,
|
500 |
+
"learning_rate/full": 0.00023230626707893625,
|
501 |
+
"loss": 3.6344,
|
502 |
+
"step": 45000,
|
503 |
+
"training_step_in_ms": 960.7837667464628
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 37.19,
|
507 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.575321912765503,
|
508 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.2694013022299941,
|
509 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 103.7207,
|
510 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.713,
|
511 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.241,
|
512 |
+
"step": 45000
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"_prepare_inputs_in_ms": 10.123616369532012,
|
516 |
+
"compute_loss_in_ms": 534.5586088547134,
|
517 |
+
"epoch": 38.02,
|
518 |
+
"learning_rate/full": 0.00022608443191494596,
|
519 |
+
"loss": 3.6259,
|
520 |
+
"step": 46000,
|
521 |
+
"training_step_in_ms": 954.3300566331018
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"_prepare_inputs_in_ms": 10.126525112020317,
|
525 |
+
"compute_loss_in_ms": 536.6205943481764,
|
526 |
+
"epoch": 38.84,
|
527 |
+
"learning_rate/full": 0.0002198305382138328,
|
528 |
+
"loss": 3.6279,
|
529 |
+
"step": 47000,
|
530 |
+
"training_step_in_ms": 953.759260071849
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"_prepare_inputs_in_ms": 10.257417954970151,
|
534 |
+
"compute_loss_in_ms": 535.2681058159797,
|
535 |
+
"epoch": 39.67,
|
536 |
+
"learning_rate/full": 0.00021356327694485794,
|
537 |
+
"loss": 3.6213,
|
538 |
+
"step": 48000,
|
539 |
+
"training_step_in_ms": 962.4967881785124
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"_prepare_inputs_in_ms": 10.271113389520906,
|
543 |
+
"compute_loss_in_ms": 535.4450263003819,
|
544 |
+
"epoch": 40.5,
|
545 |
+
"learning_rate/full": 0.0002072826035235433,
|
546 |
+
"loss": 3.6186,
|
547 |
+
"step": 49000,
|
548 |
+
"training_step_in_ms": 961.3730522751575
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"_prepare_inputs_in_ms": 10.129716445459053,
|
552 |
+
"compute_loss_in_ms": 536.4764073403785,
|
553 |
+
"epoch": 41.32,
|
554 |
+
"learning_rate/full": 0.00020099472864285533,
|
555 |
+
"loss": 3.6137,
|
556 |
+
"step": 50000,
|
557 |
+
"training_step_in_ms": 960.2726457127137
|
558 |
+
},
|
559 |
+
{
|
560 |
+
"epoch": 41.32,
|
561 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.5703847408294678,
|
562 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.2688142864806811,
|
563 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 100.2164,
|
564 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.983,
|
565 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.249,
|
566 |
+
"step": 50000
|
567 |
+
},
|
568 |
+
{
|
569 |
+
"_prepare_inputs_in_ms": 10.502501730693549,
|
570 |
+
"compute_loss_in_ms": 535.0548804986756,
|
571 |
+
"epoch": 42.15,
|
572 |
+
"learning_rate/full": 0.0001947058701169798,
|
573 |
+
"loss": 3.6106,
|
574 |
+
"step": 51000,
|
575 |
+
"training_step_in_ms": 958.0683015501127
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"_prepare_inputs_in_ms": 10.785648202290758,
|
579 |
+
"compute_loss_in_ms": 536.7012275556335,
|
580 |
+
"epoch": 42.98,
|
581 |
+
"learning_rate/full": 0.0001884222467327876,
|
582 |
+
"loss": 3.6073,
|
583 |
+
"step": 52000,
|
584 |
+
"training_step_in_ms": 951.947691895999
|
585 |
+
},
|
586 |
+
{
|
587 |
+
"_prepare_inputs_in_ms": 10.585681669297628,
|
588 |
+
"compute_loss_in_ms": 535.5102476192405,
|
589 |
+
"epoch": 43.8,
|
590 |
+
"learning_rate/full": 0.00018214380145695523,
|
591 |
+
"loss": 3.6024,
|
592 |
+
"step": 53000,
|
593 |
+
"training_step_in_ms": 962.6988452640362
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"_prepare_inputs_in_ms": 10.68288057774771,
|
597 |
+
"compute_loss_in_ms": 535.9786380403675,
|
598 |
+
"epoch": 44.63,
|
599 |
+
"learning_rate/full": 0.00017588929863586686,
|
600 |
+
"loss": 3.6046,
|
601 |
+
"step": 54000,
|
602 |
+
"training_step_in_ms": 966.1844932027161
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"_prepare_inputs_in_ms": 10.645952994469553,
|
606 |
+
"compute_loss_in_ms": 535.4971501872642,
|
607 |
+
"epoch": 45.45,
|
608 |
+
"learning_rate/full": 0.00016965863787013347,
|
609 |
+
"loss": 3.5954,
|
610 |
+
"step": 55000,
|
611 |
+
"training_step_in_ms": 966.1277901912108
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 45.45,
|
615 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.5649678707122803,
|
616 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.27166900209048683,
|
617 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 102.2773,
|
618 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.822,
|
619 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.244,
|
620 |
+
"step": 55000
|
621 |
+
},
|
622 |
+
{
|
623 |
+
"_prepare_inputs_in_ms": 10.577075158859172,
|
624 |
+
"compute_loss_in_ms": 534.4740462127374,
|
625 |
+
"epoch": 46.28,
|
626 |
+
"learning_rate/full": 0.00016345179061642948,
|
627 |
+
"loss": 3.5963,
|
628 |
+
"step": 56000,
|
629 |
+
"training_step_in_ms": 961.5655309080612
|
630 |
+
},
|
631 |
+
{
|
632 |
+
"_prepare_inputs_in_ms": 10.732970108627342,
|
633 |
+
"compute_loss_in_ms": 537.2660472553689,
|
634 |
+
"epoch": 47.11,
|
635 |
+
"learning_rate/full": 0.0001572873072366209,
|
636 |
+
"loss": 3.597,
|
637 |
+
"step": 57000,
|
638 |
+
"training_step_in_ms": 964.5027116436977
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"_prepare_inputs_in_ms": 10.73382615565788,
|
642 |
+
"compute_loss_in_ms": 538.1741794921691,
|
643 |
+
"epoch": 47.93,
|
644 |
+
"learning_rate/full": 0.0001511650606366491,
|
645 |
+
"loss": 3.5895,
|
646 |
+
"step": 58000,
|
647 |
+
"training_step_in_ms": 949.1175830988213
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"_prepare_inputs_in_ms": 10.706503831432201,
|
651 |
+
"compute_loss_in_ms": 536.7453673920827,
|
652 |
+
"epoch": 48.76,
|
653 |
+
"learning_rate/full": 0.0001450911048478807,
|
654 |
+
"loss": 3.5876,
|
655 |
+
"step": 59000,
|
656 |
+
"training_step_in_ms": 968.0035566822626
|
657 |
+
},
|
658 |
+
{
|
659 |
+
"_prepare_inputs_in_ms": 10.903483389178291,
|
660 |
+
"compute_loss_in_ms": 537.1148272417486,
|
661 |
+
"epoch": 49.59,
|
662 |
+
"learning_rate/full": 0.00013906544966141887,
|
663 |
+
"loss": 3.5819,
|
664 |
+
"step": 60000,
|
665 |
+
"training_step_in_ms": 964.3682058413979
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"epoch": 49.59,
|
669 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.5601305961608887,
|
670 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.27116285100803245,
|
671 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 101.8706,
|
672 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.853,
|
673 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.245,
|
674 |
+
"step": 60000
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"_prepare_inputs_in_ms": 10.826663774233765,
|
678 |
+
"compute_loss_in_ms": 535.5709582263371,
|
679 |
+
"epoch": 50.41,
|
680 |
+
"learning_rate/full": 0.00013310610391163933,
|
681 |
+
"loss": 3.5762,
|
682 |
+
"step": 61000,
|
683 |
+
"training_step_in_ms": 957.2617566076806
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"_prepare_inputs_in_ms": 10.595198371564038,
|
687 |
+
"compute_loss_in_ms": 536.0367681181524,
|
688 |
+
"epoch": 51.24,
|
689 |
+
"learning_rate/full": 0.0001272129067134662,
|
690 |
+
"loss": 3.5751,
|
691 |
+
"step": 62000,
|
692 |
+
"training_step_in_ms": 959.1705903129186
|
693 |
+
},
|
694 |
+
{
|
695 |
+
"_prepare_inputs_in_ms": 10.456255728611723,
|
696 |
+
"compute_loss_in_ms": 536.2733452994144,
|
697 |
+
"epoch": 52.07,
|
698 |
+
"learning_rate/full": 0.00012139747473708569,
|
699 |
+
"loss": 3.5774,
|
700 |
+
"step": 63000,
|
701 |
+
"training_step_in_ms": 955.730251706671
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"_prepare_inputs_in_ms": 10.639551113941707,
|
705 |
+
"compute_loss_in_ms": 535.7200796955731,
|
706 |
+
"epoch": 52.89,
|
707 |
+
"learning_rate/full": 0.00011564819693413189,
|
708 |
+
"loss": 3.568,
|
709 |
+
"step": 64000,
|
710 |
+
"training_step_in_ms": 951.6928666429594
|
711 |
+
},
|
712 |
+
{
|
713 |
+
"_prepare_inputs_in_ms": 10.60645360336639,
|
714 |
+
"compute_loss_in_ms": 535.3036272318568,
|
715 |
+
"epoch": 53.72,
|
716 |
+
"learning_rate/full": 0.00010998812020655949,
|
717 |
+
"loss": 3.5703,
|
718 |
+
"step": 65000,
|
719 |
+
"training_step_in_ms": 963.1167565376963
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 53.72,
|
723 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.5590660572052,
|
724 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.2733920686032914,
|
725 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 99.9831,
|
726 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 8.001,
|
727 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.25,
|
728 |
+
"step": 65000
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"_prepare_inputs_in_ms": 10.624523456094831,
|
732 |
+
"compute_loss_in_ms": 534.0653136165347,
|
733 |
+
"epoch": 54.55,
|
734 |
+
"learning_rate/full": 0.00010441152222708468,
|
735 |
+
"loss": 3.5693,
|
736 |
+
"step": 66000,
|
737 |
+
"training_step_in_ms": 955.8435329974163
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"_prepare_inputs_in_ms": 10.65835806389805,
|
741 |
+
"compute_loss_in_ms": 536.2088124424918,
|
742 |
+
"epoch": 55.37,
|
743 |
+
"learning_rate/full": 9.893506973588506e-05,
|
744 |
+
"loss": 3.5599,
|
745 |
+
"step": 67000,
|
746 |
+
"training_step_in_ms": 957.1059285002993
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"_prepare_inputs_in_ms": 10.751230709021911,
|
750 |
+
"compute_loss_in_ms": 536.6291307259817,
|
751 |
+
"epoch": 56.2,
|
752 |
+
"learning_rate/full": 9.355322604944605e-05,
|
753 |
+
"loss": 3.5668,
|
754 |
+
"step": 68000,
|
755 |
+
"training_step_in_ms": 959.1418899303535
|
756 |
+
},
|
757 |
+
{
|
758 |
+
"_prepare_inputs_in_ms": 10.653449523961172,
|
759 |
+
"compute_loss_in_ms": 536.7383008667966,
|
760 |
+
"epoch": 57.02,
|
761 |
+
"learning_rate/full": 8.829252005938348e-05,
|
762 |
+
"loss": 3.5592,
|
763 |
+
"step": 69000,
|
764 |
+
"training_step_in_ms": 955.6575022591278
|
765 |
+
},
|
766 |
+
{
|
767 |
+
"_prepare_inputs_in_ms": 10.65822267276235,
|
768 |
+
"compute_loss_in_ms": 535.9257607464679,
|
769 |
+
"epoch": 57.85,
|
770 |
+
"learning_rate/full": 8.312650768346744e-05,
|
771 |
+
"loss": 3.5575,
|
772 |
+
"step": 70000,
|
773 |
+
"training_step_in_ms": 951.2662082569441
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 57.85,
|
777 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.5556719303131104,
|
778 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.2734467694599133,
|
779 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 104.2955,
|
780 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.671,
|
781 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.24,
|
782 |
+
"step": 70000
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"_prepare_inputs_in_ms": 10.608355628053953,
|
786 |
+
"compute_loss_in_ms": 534.1021929110866,
|
787 |
+
"epoch": 58.68,
|
788 |
+
"learning_rate/full": 7.80762980438341e-05,
|
789 |
+
"loss": 3.5556,
|
790 |
+
"step": 71000,
|
791 |
+
"training_step_in_ms": 948.2094520897372
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"_prepare_inputs_in_ms": 10.676257735467516,
|
795 |
+
"compute_loss_in_ms": 536.0682506592711,
|
796 |
+
"epoch": 59.5,
|
797 |
+
"learning_rate/full": 7.315176250595717e-05,
|
798 |
+
"loss": 3.5537,
|
799 |
+
"step": 72000,
|
800 |
+
"training_step_in_ms": 954.8686325427843
|
801 |
+
},
|
802 |
+
{
|
803 |
+
"_prepare_inputs_in_ms": 10.610922348219901,
|
804 |
+
"compute_loss_in_ms": 536.3908133659279,
|
805 |
+
"epoch": 60.33,
|
806 |
+
"learning_rate/full": 6.835266183844516e-05,
|
807 |
+
"loss": 3.5479,
|
808 |
+
"step": 73000,
|
809 |
+
"training_step_in_ms": 954.1712517963024
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"_prepare_inputs_in_ms": 10.579945259494707,
|
813 |
+
"compute_loss_in_ms": 534.4352571795462,
|
814 |
+
"epoch": 61.16,
|
815 |
+
"learning_rate/full": 6.368374166947542e-05,
|
816 |
+
"loss": 3.5467,
|
817 |
+
"step": 74000,
|
818 |
+
"training_step_in_ms": 953.0113322847756
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"_prepare_inputs_in_ms": 10.577161580207758,
|
822 |
+
"compute_loss_in_ms": 536.7000861178385,
|
823 |
+
"epoch": 61.98,
|
824 |
+
"learning_rate/full": 5.914514927911328e-05,
|
825 |
+
"loss": 3.5466,
|
826 |
+
"step": 75000,
|
827 |
+
"training_step_in_ms": 950.8998943779152
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 61.98,
|
831 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.5562994480133057,
|
832 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.27468764903823617,
|
833 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 102.8368,
|
834 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.779,
|
835 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.243,
|
836 |
+
"step": 75000
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"_prepare_inputs_in_ms": 10.397925437655209,
|
840 |
+
"compute_loss_in_ms": 535.1076509790728,
|
841 |
+
"epoch": 62.81,
|
842 |
+
"learning_rate/full": 5.475477712440255e-05,
|
843 |
+
"loss": 3.5454,
|
844 |
+
"step": 76000,
|
845 |
+
"training_step_in_ms": 949.9264260384953
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"_prepare_inputs_in_ms": 10.516429967130534,
|
849 |
+
"compute_loss_in_ms": 537.9902690803865,
|
850 |
+
"epoch": 63.64,
|
851 |
+
"learning_rate/full": 5.0499380128392283e-05,
|
852 |
+
"loss": 3.5418,
|
853 |
+
"step": 77000,
|
854 |
+
"training_step_in_ms": 963.6520826652413
|
855 |
+
},
|
856 |
+
{
|
857 |
+
"_prepare_inputs_in_ms": 10.470940343337134,
|
858 |
+
"compute_loss_in_ms": 536.5116302901879,
|
859 |
+
"epoch": 64.46,
|
860 |
+
"learning_rate/full": 4.639614598504125e-05,
|
861 |
+
"loss": 3.5397,
|
862 |
+
"step": 78000,
|
863 |
+
"training_step_in_ms": 957.950764612644
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"_prepare_inputs_in_ms": 10.59993867285084,
|
867 |
+
"compute_loss_in_ms": 537.1390544432215,
|
868 |
+
"epoch": 65.29,
|
869 |
+
"learning_rate/full": 4.244480421242036e-05,
|
870 |
+
"loss": 3.5388,
|
871 |
+
"step": 79000,
|
872 |
+
"training_step_in_ms": 961.8771279493812
|
873 |
+
},
|
874 |
+
{
|
875 |
+
"_prepare_inputs_in_ms": 10.679984404356219,
|
876 |
+
"compute_loss_in_ms": 536.696684517432,
|
877 |
+
"epoch": 66.12,
|
878 |
+
"learning_rate/full": 3.8649262125702656e-05,
|
879 |
+
"loss": 3.5329,
|
880 |
+
"step": 80000,
|
881 |
+
"training_step_in_ms": 957.4748168167425
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 66.12,
|
885 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.556597948074341,
|
886 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.2742539533100543,
|
887 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 100.6419,
|
888 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.949,
|
889 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.248,
|
890 |
+
"step": 80000
|
891 |
+
},
|
892 |
+
{
|
893 |
+
"_prepare_inputs_in_ms": 10.708052520753771,
|
894 |
+
"compute_loss_in_ms": 535.2645241598366,
|
895 |
+
"epoch": 66.94,
|
896 |
+
"learning_rate/full": 3.500971449864994e-05,
|
897 |
+
"loss": 3.5345,
|
898 |
+
"step": 81000,
|
899 |
+
"training_step_in_ms": 948.9210075238952
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"_prepare_inputs_in_ms": 10.605949840741232,
|
903 |
+
"compute_loss_in_ms": 535.3940441570012,
|
904 |
+
"epoch": 67.77,
|
905 |
+
"learning_rate/full": 3.153703882232173e-05,
|
906 |
+
"loss": 3.5346,
|
907 |
+
"step": 82000,
|
908 |
+
"training_step_in_ms": 957.2232636878034
|
909 |
+
},
|
910 |
+
{
|
911 |
+
"_prepare_inputs_in_ms": 10.527875950676389,
|
912 |
+
"compute_loss_in_ms": 535.3903734084452,
|
913 |
+
"epoch": 68.6,
|
914 |
+
"learning_rate/full": 2.823094906089525e-05,
|
915 |
+
"loss": 3.5362,
|
916 |
+
"step": 83000,
|
917 |
+
"training_step_in_ms": 960.9660885017365
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"_prepare_inputs_in_ms": 10.645452778204344,
|
921 |
+
"compute_loss_in_ms": 535.3771834741347,
|
922 |
+
"epoch": 69.42,
|
923 |
+
"learning_rate/full": 2.509166124130553e-05,
|
924 |
+
"loss": 3.5284,
|
925 |
+
"step": 84000,
|
926 |
+
"training_step_in_ms": 959.7084383748006
|
927 |
+
},
|
928 |
+
{
|
929 |
+
"_prepare_inputs_in_ms": 10.593148670741357,
|
930 |
+
"compute_loss_in_ms": 534.9863913216395,
|
931 |
+
"epoch": 70.25,
|
932 |
+
"learning_rate/full": 2.212855773155269e-05,
|
933 |
+
"loss": 3.5273,
|
934 |
+
"step": 85000,
|
935 |
+
"training_step_in_ms": 970.6172955055954
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 70.25,
|
939 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.555929660797119,
|
940 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.2741459251366367,
|
941 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 104.7737,
|
942 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.636,
|
943 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.239,
|
944 |
+
"step": 85000
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"_prepare_inputs_in_ms": 10.723522963888216,
|
948 |
+
"compute_loss_in_ms": 534.6476732452866,
|
949 |
+
"epoch": 71.07,
|
950 |
+
"learning_rate/full": 1.9341343786710864e-05,
|
951 |
+
"loss": 3.5266,
|
952 |
+
"step": 86000,
|
953 |
+
"training_step_in_ms": 961.9524979006965
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"_prepare_inputs_in_ms": 10.785187994129956,
|
957 |
+
"compute_loss_in_ms": 536.4809199275915,
|
958 |
+
"epoch": 71.9,
|
959 |
+
"learning_rate/full": 1.6732775565058435e-05,
|
960 |
+
"loss": 3.5253,
|
961 |
+
"step": 87000,
|
962 |
+
"training_step_in_ms": 950.8976757206256
|
963 |
+
},
|
964 |
+
{
|
965 |
+
"_prepare_inputs_in_ms": 10.603952513309196,
|
966 |
+
"compute_loss_in_ms": 535.7741147053894,
|
967 |
+
"epoch": 72.73,
|
968 |
+
"learning_rate/full": 1.4305432569654864e-05,
|
969 |
+
"loss": 3.524,
|
970 |
+
"step": 88000,
|
971 |
+
"training_step_in_ms": 959.2451942999614
|
972 |
+
},
|
973 |
+
{
|
974 |
+
"_prepare_inputs_in_ms": 10.706391342449933,
|
975 |
+
"compute_loss_in_ms": 536.408079084591,
|
976 |
+
"epoch": 73.55,
|
977 |
+
"learning_rate/full": 1.2059561887499037e-05,
|
978 |
+
"loss": 3.5265,
|
979 |
+
"step": 89000,
|
980 |
+
"training_step_in_ms": 973.4634857769124
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"_prepare_inputs_in_ms": 10.6856812821934,
|
984 |
+
"compute_loss_in_ms": 537.2633295034757,
|
985 |
+
"epoch": 74.38,
|
986 |
+
"learning_rate/full": 1.0003841866378549e-05,
|
987 |
+
"loss": 3.5218,
|
988 |
+
"step": 90000,
|
989 |
+
"training_step_in_ms": 966.5726283045951
|
990 |
+
},
|
991 |
+
{
|
992 |
+
"epoch": 74.38,
|
993 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.5546064376831055,
|
994 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.27359656588473774,
|
995 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 104.0763,
|
996 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.687,
|
997 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.24,
|
998 |
+
"step": 90000
|
999 |
+
},
|
1000 |
+
{
|
1001 |
+
"_prepare_inputs_in_ms": 10.64931857888019,
|
1002 |
+
"compute_loss_in_ms": 535.808490979718,
|
1003 |
+
"epoch": 75.21,
|
1004 |
+
"learning_rate/full": 8.132070715440754e-06,
|
1005 |
+
"loss": 3.5219,
|
1006 |
+
"step": 91000,
|
1007 |
+
"training_step_in_ms": 957.4841072742129
|
1008 |
+
},
|
1009 |
+
{
|
1010 |
+
"_prepare_inputs_in_ms": 10.87383456970565,
|
1011 |
+
"compute_loss_in_ms": 537.6603767276974,
|
1012 |
+
"epoch": 76.03,
|
1013 |
+
"learning_rate/full": 6.453582116869461e-06,
|
1014 |
+
"loss": 3.5235,
|
1015 |
+
"step": 92000,
|
1016 |
+
"training_step_in_ms": 954.7427223158302
|
1017 |
+
},
|
1018 |
+
{
|
1019 |
+
"_prepare_inputs_in_ms": 10.69017239450477,
|
1020 |
+
"compute_loss_in_ms": 537.0892604731489,
|
1021 |
+
"epoch": 76.86,
|
1022 |
+
"learning_rate/full": 4.964706300643118e-06,
|
1023 |
+
"loss": 3.5189,
|
1024 |
+
"step": 93000,
|
1025 |
+
"training_step_in_ms": 950.3190122217638
|
1026 |
+
},
|
1027 |
+
{
|
1028 |
+
"_prepare_inputs_in_ms": 10.618111693882383,
|
1029 |
+
"compute_loss_in_ms": 535.7142543839291,
|
1030 |
+
"epoch": 77.69,
|
1031 |
+
"learning_rate/full": 3.6686926578696213e-06,
|
1032 |
+
"loss": 3.5235,
|
1033 |
+
"step": 94000,
|
1034 |
+
"training_step_in_ms": 958.8555470507126
|
1035 |
+
},
|
1036 |
+
{
|
1037 |
+
"_prepare_inputs_in_ms": 10.73988960427232,
|
1038 |
+
"compute_loss_in_ms": 536.3263423398603,
|
1039 |
+
"epoch": 78.51,
|
1040 |
+
"learning_rate/full": 2.5658174353882404e-06,
|
1041 |
+
"loss": 3.5215,
|
1042 |
+
"step": 95000,
|
1043 |
+
"training_step_in_ms": 964.6057669939473
|
1044 |
+
},
|
1045 |
+
{
|
1046 |
+
"epoch": 78.51,
|
1047 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.5548150539398193,
|
1048 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.27406488207696067,
|
1049 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 104.9846,
|
1050 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.62,
|
1051 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.238,
|
1052 |
+
"step": 95000
|
1053 |
+
},
|
1054 |
+
{
|
1055 |
+
"_prepare_inputs_in_ms": 10.761066970824286,
|
1056 |
+
"compute_loss_in_ms": 535.5862640386913,
|
1057 |
+
"epoch": 79.34,
|
1058 |
+
"learning_rate/full": 1.6593767888209988e-06,
|
1059 |
+
"loss": 3.5201,
|
1060 |
+
"step": 96000,
|
1061 |
+
"training_step_in_ms": 953.487945659901
|
1062 |
+
},
|
1063 |
+
{
|
1064 |
+
"_prepare_inputs_in_ms": 10.744887009612285,
|
1065 |
+
"compute_loss_in_ms": 536.8042176247109,
|
1066 |
+
"epoch": 80.17,
|
1067 |
+
"learning_rate/full": 9.484543083217335e-07,
|
1068 |
+
"loss": 3.5242,
|
1069 |
+
"step": 97000,
|
1070 |
+
"training_step_in_ms": 955.935797311482
|
1071 |
+
},
|
1072 |
+
{
|
1073 |
+
"_prepare_inputs_in_ms": 10.609967146418057,
|
1074 |
+
"compute_loss_in_ms": 536.5163776981644,
|
1075 |
+
"epoch": 80.99,
|
1076 |
+
"learning_rate/full": 4.3558991431862373e-07,
|
1077 |
+
"loss": 3.5217,
|
1078 |
+
"step": 98000,
|
1079 |
+
"training_step_in_ms": 951.0243763268227
|
1080 |
+
},
|
1081 |
+
{
|
1082 |
+
"_prepare_inputs_in_ms": 10.550453630159609,
|
1083 |
+
"compute_loss_in_ms": 535.8989973879652,
|
1084 |
+
"epoch": 81.82,
|
1085 |
+
"learning_rate/full": 1.1945383759244255e-07,
|
1086 |
+
"loss": 3.523,
|
1087 |
+
"step": 99000,
|
1088 |
+
"training_step_in_ms": 959.1436755338218
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"_prepare_inputs_in_ms": 10.565008323756047,
|
1092 |
+
"compute_loss_in_ms": 536.139583913493,
|
1093 |
+
"epoch": 82.64,
|
1094 |
+
"learning_rate/full": 9.51678964100644e-10,
|
1095 |
+
"loss": 3.523,
|
1096 |
+
"step": 100000,
|
1097 |
+
"training_step_in_ms": 958.2332628678996
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 82.64,
|
1101 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_loss": 3.554699182510376,
|
1102 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_meteor": 0.2739906528866304,
|
1103 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_runtime": 105.8588,
|
1104 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_samples_per_second": 7.557,
|
1105 |
+
"eval_visual_genome-region_descriptions_v1.2.0-test_steps_per_second": 0.236,
|
1106 |
+
"step": 100000
|
1107 |
+
}
|
1108 |
+
],
|
1109 |
+
"max_steps": 100000,
|
1110 |
+
"num_train_epochs": 83,
|
1111 |
+
"total_flos": 1.7305644974792963e+23,
|
1112 |
+
"trial_name": null,
|
1113 |
+
"trial_params": null
|
1114 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7040a71e26bc778074c20ff073d403c43f0ca0843108f7c14f1ed43e641fe11c
|
3 |
+
size 5432
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|