xsway commited on
Commit
b5b9f4f
·
1 Parent(s): 3cb0778

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +129 -0
README.md ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ka
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - speech
11
+ - xlsr-fine-tuning-week
12
+ license: apache-2.0
13
+ model-index:
14
+ - name: XLSR Wav2Vec finetuned for Georgian
15
+ results:
16
+ - task:
17
+ name: Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: Common Voice ka
21
+ type: common_voice
22
+ args: ka
23
+ metrics:
24
+ - name: Test WER
25
+ type: wer
26
+ value: 44.92
27
+ ---
28
+
29
+ # Wav2Vec2-Large-XLSR-53-Georgian
30
+
31
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Georgian using the [Common Voice](https://huggingface.co/datasets/common_voice).
32
+ When using this model, make sure that your speech input is sampled at 16kHz.
33
+
34
+ ## Usage
35
+
36
+ The model can be used directly (without a language model) as follows:
37
+
38
+ ```python
39
+ import librosa
40
+ import torch
41
+ import torchaudio
42
+ from datasets import load_dataset
43
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
44
+
45
+
46
+ test_dataset = load_dataset("common_voice", "ka", split="test[:2%]")
47
+
48
+ processor = Wav2Vec2Processor.from_pretrained("xsway/wav2vec2-large-xlsr-georgian")
49
+ model = Wav2Vec2ForCTC.from_pretrained("xsway/wav2vec2-large-xlsr-georgian")
50
+
51
+ resampler = lambda sampling_rate, y: librosa.resample(y.numpy().squeeze(), sampling_rate, 16_000)
52
+
53
+ # Preprocessing the datasets.
54
+ # We need to read the audio files as arrays
55
+ def speech_file_to_array_fn(batch):
56
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
57
+ batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
58
+ return batch
59
+
60
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
61
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
62
+
63
+ with torch.no_grad():
64
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
65
+
66
+ predicted_ids = torch.argmax(logits, dim=-1)
67
+
68
+ print("Prediction:", processor.batch_decode(predicted_ids))
69
+ print("Reference:", test_dataset["sentence"][:2])
70
+ ```
71
+
72
+
73
+ ## Evaluation
74
+
75
+ The model can be evaluated as follows on the Georgian test data of Common Voice.
76
+
77
+
78
+ ```python
79
+ import torch
80
+ import torchaudio
81
+ from datasets import load_dataset, load_metric
82
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
83
+ import re
84
+
85
+ test_dataset = load_dataset("common_voice", "ka", split="test")
86
+ wer = load_metric("wer")
87
+
88
+ processor = Wav2Vec2Processor.from_pretrained("xsway/wav2vec2-large-xlsr-georgian")
89
+ model = Wav2Vec2ForCTC.from_pretrained("xsway/wav2vec2-large-xlsr-georgian")
90
+ model.to("cuda")
91
+
92
+ chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
93
+ resampler = lambda sampling_rate, y: librosa.resample(y.numpy().squeeze(), sampling_rate, 16_000)
94
+
95
+ # Preprocessing the datasets.
96
+ # We need to read the audio files as arrays
97
+ def speech_file_to_array_fn(batch):
98
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
99
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
100
+ batch["speech"] = resampler(sampling_rate, speech_array).squeeze()
101
+ return batch
102
+
103
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
104
+
105
+ # Preprocessing the datasets.
106
+ # We need to read the audio files as arrays
107
+ def evaluate(batch):
108
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
109
+
110
+ with torch.no_grad():
111
+ logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
112
+
113
+ pred_ids = torch.argmax(logits, dim=-1)
114
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
115
+ return batch
116
+
117
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
118
+
119
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
120
+ ```
121
+
122
+ **Test Result**: 44.92 %
123
+
124
+
125
+ ## Training
126
+
127
+ The Common Voice `train`, `validation` datasets were used for training.
128
+
129
+ The script used for training can be found [here](...)