pom
commited on
Commit
·
60441ff
1
Parent(s):
18ab44d
Update xverse model
Browse files- MODEL_LICENSE.pdf +0 -0
- README.md +41 -75
- pytorch_model-00003-of-00003.bin → pytorch_model-00001-of-00010.bin +2 -2
- pytorch_model-00001-of-00003.bin → pytorch_model-00002-of-00010.bin +2 -2
- pytorch_model-00002-of-00003.bin → pytorch_model-00003-of-00010.bin +2 -2
- pytorch_model-00004-of-00010.bin +3 -0
- pytorch_model-00005-of-00010.bin +3 -0
- pytorch_model-00006-of-00010.bin +3 -0
- pytorch_model-00007-of-00010.bin +3 -0
- pytorch_model-00008-of-00010.bin +3 -0
- pytorch_model-00009-of-00010.bin +3 -0
- pytorch_model-00010-of-00010.bin +3 -0
- pytorch_model.bin.index.json +404 -404
MODEL_LICENSE.pdf
CHANGED
Binary files a/MODEL_LICENSE.pdf and b/MODEL_LICENSE.pdf differ
|
|
README.md
CHANGED
@@ -12,8 +12,8 @@ inference: false
|
|
12 |
**XVERSE-13B** 是由深圳元象科技自主研发的支持多语言的大语言模型(Large Language Model),主要特点如下:
|
13 |
|
14 |
- **模型结构**:XVERSE-13B 使用主流 Decoder-only 的标准 Transformer 网络结构,支持 8K 的上下文长度(Context Length),为同尺寸模型中最长,能满足更长的多轮对话、知识问答与摘要等需求,模型应用场景更广泛。
|
15 |
-
- **训练数据**:构建了
|
16 |
-
- **分词**:基于 BPE(Byte-Pair Encoding)算法,使用上百 GB 语料训练了一个词表大小为 100,
|
17 |
- **训练框架**:自主研发多项关键技术,包括高效算子、显存优化、并行调度策略、数据-计算-通信重叠、平台和框架协同等,让训练效率更高,模型稳定性强,在千卡集群上的峰值算力利用率可达到 58.5%,位居业界前列。
|
18 |
|
19 |
## Model Introduction
|
@@ -21,88 +21,55 @@ inference: false
|
|
21 |
**XVERSE-13B** is a multilingual large language model, independently developed by Shenzhen Yuanxiang Technology. Its key features are as follows:
|
22 |
|
23 |
- **Model Structure**: XVERSE-13B uses the mainstream Decoder-only Transformer network structure, supports 8k context length, the longest one among models of the same size, which can meet the need of longer multi-round dialogues, knowledge question-answering, and summarization. This makes the model more versatile in application scenarios.
|
24 |
-
- **Training Data**: The model has been thoroughly trained on a diversified and high-quality dataset consisting of
|
25 |
-
- **Tokenization**: Based on the BPE (Byte-Pair Encoding) algorithm, a tokenizer with a vocabulary size of 100,
|
26 |
- **Training Framework**: Several key technologies have also been independently developed, including efficient operators, memory optimization, parallel scheduling strategies, overlap of data-computation-communication, and synergy between platforms and frameworks. These advancements enhance training efficiency and model stability. With these technologies, the peak computational power utilization rate on a thousand-card cluster can reach 58.5%, ranking at the forefront of the industry.
|
27 |
|
28 |
## 评测结果
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
|
33 |
-
| :------------------------: |
|
34 |
-
|
|
35 |
-
|
|
36 |
-
|
|
37 |
-
|
|
38 |
-
|
|
39 |
-
|
|
40 |
-
|
|
41 |
-
|
|
42 |
-
|
|
|
|
|
|
43 |
|
44 |
> <sup>1:只针对其中的单项选择题进行测试,即排除了填空题、开放性问题和多项选择题</sup>
|
45 |
-
> <sup>2:来源于 [Baichuan-13B](https://github.com/baichuan-inc/Baichuan-13B) 的汇报结果</sup>
|
46 |
-
> <sup>3:来源于 [C-Eval](https://cevalbenchmark.com/) 的汇报结果</sup>
|
47 |
-
> <sup>4:来源于[Llama 2 论文](https://arxiv.org/abs/2307.09288)的汇报结果</sup>
|
48 |
-
>
|
49 |
-
> 对于 MMLU ,我们采用作者提供的[评测工具](https://github.com/hendrycks/test),C-Eval、AGIEval、GAOKAO-Bench、GAOKAO-English 与 MMLU 的评测方式相同,且统一采用 **5-shot** 构造测试样本。
|
50 |
|
|
|
|
|
51 |
|
52 |
## Model Evaluation
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
|
57 |
-
| :------------------------: |
|
58 |
-
|
|
59 |
-
|
|
60 |
-
|
|
61 |
-
|
|
62 |
-
|
|
63 |
-
|
|
64 |
-
|
|
65 |
-
|
|
66 |
-
|
|
|
|
|
|
67 |
|
68 |
> <sup>1: Tests are conducted only on single-answer multiple-choice questions, thus excluding fill-in-the-blanks, open-ended questions, and multiple-answer multiple-choice questions.</sup>
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
>
|
73 |
-
> For MMLU, we adopt the [evaluation tools](https://github.com/hendrycks/test) provided by the authors, C-Eval, AGIEval, GAOKAO-Bench, GAOKAO-English are the same as MMLU, and uniformly use **5-shot** to construct the test samples.
|
74 |
-
|
75 |
-
### MMLU 各类别指标
|
76 |
-
|
77 |
-
MMLU Category Results
|
78 |
-
|
79 |
-
| 模型\类别 | Average | STEM | Social Science | Humanities | Others |
|
80 |
-
| :------------------------: | :------: | :------: | :------------: | :--------: | :------: |
|
81 |
-
| Baichuan-13B | 51.6 | 41.6 | 60.9 | 47.4 | 58.5 |
|
82 |
-
| Llama-1-13B | 46.9 | 35.8 | 53.8 | 45.0 | 53.3 |
|
83 |
-
| Llama-2-13B | 54.8 | 44.1 | 62.6 | 52.8 | 61.1 |
|
84 |
-
| moss-moon-003-base (16B) | 24.7 | 23.0 | 24.0 | 25.2 | 26.3 |
|
85 |
-
| OpenLLaMA-13B | 42.4 | 34.7 | 48.6 | 40.0 | 47.1 |
|
86 |
-
| OPT-13B | 25.2 | 23.9 | 24.1 | 25.9 | 26.3 |
|
87 |
-
| Pythia-12B | 25.1 | 24.8 | 23.0 | 26.1 | 26.0 |
|
88 |
-
| Ziya-LLaMA-13B-Pretrain-v1 | 43.9 | 36.3 | 48.8 | 41.1 | 50.3 |
|
89 |
-
| **XVERSE-13B** | **55.1** | **44.5** | **64.4** | **50.5** | **62.9** |
|
90 |
-
|
91 |
-
### C-Eval 各类别指标
|
92 |
-
|
93 |
-
C-Eval Category Results
|
94 |
-
|
95 |
-
| 模型\类别 | Average | STEM | Social Science | Humanities | Others |
|
96 |
-
| :------------------------: | :------: | :------: | :------------: | :--------: | :------: |
|
97 |
-
| Baichuan-13B | 53.6 | 47.0 | 66.8 | 57.3 | 49.8 |
|
98 |
-
| Llama-1-13B | 28.8 | 27.5 | 33.9 | 27.7 | 27.7 |
|
99 |
-
| Llama-2-13B | 35.6 | 34.5 | 39.8 | 36.2 | 33.2 |
|
100 |
-
| moss-moon-003-base (16B) | 33.1 | 31.6 | 37.0 | 33.4 | 32.1 |
|
101 |
-
| OpenLLaMA-13B | 24.7 | 25.5 | 23.5 | 24.2 | 24.7 |
|
102 |
-
| OPT-13B | 25.0 | 24.4 | 24.6 | 25.9 | 25.4 |
|
103 |
-
| Pythia-12B | 26.2 | 26.8 | 25.1 | 26.7 | 25.4 |
|
104 |
-
| Ziya-LLaMA-13B-Pretrain-v1 | 30.2 | 27.8 | 34.3 | 32.0 | 29.0 |
|
105 |
-
| **XVERSE-13B** | **54.7** | **45.6** | **66.2** | **58.3** | **56.9** |
|
106 |
|
107 |
### Loading with Transformers
|
108 |
|
@@ -122,10 +89,9 @@ The XVERSE-13B model can be loaded for inference using the following code:
|
|
122 |
>>> print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True))
|
123 |
```
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
For more details, including the demo of text generation and environmental dependencies, please refer to our [Github](https://github.com/xverse-ai/XVERSE-13B).
|
128 |
|
|
|
129 |
|
130 |
## 局限性与免责申明
|
131 |
|
|
|
12 |
**XVERSE-13B** 是由深圳元象科技自主研发的支持多语言的大语言模型(Large Language Model),主要特点如下:
|
13 |
|
14 |
- **模型结构**:XVERSE-13B 使用主流 Decoder-only 的标准 Transformer 网络结构,支持 8K 的上下文长度(Context Length),为同尺寸模型中最长,能满足更长的多轮对话、知识问答与摘要等需求,模型应用场景更广泛。
|
15 |
+
- **训练数据**:构建了 3.2 万亿 token 的高质量、多样化的数据对模型进行充分训练,包含中、英、俄、西等 40 多种语言,通过精细化设置不同类型数据的采样比例,使得中英两种语言表现优异,也能兼顾其他语言效果。
|
16 |
+
- **分词**:基于 BPE(Byte-Pair Encoding)算法,使用上百 GB 语料训练了一个词表大小为 100,534 的分词器,能够同时支持多语言,而无需额外扩展词表。
|
17 |
- **训练框架**:自主研发多项关键技术,包括高效算子、显存优化、并行调度策略、数据-计算-通信重叠、平台和框架协同等,让训练效率更高,模型稳定性强,在千卡集群上的峰值算力利用率可达到 58.5%,位居业界前列。
|
18 |
|
19 |
## Model Introduction
|
|
|
21 |
**XVERSE-13B** is a multilingual large language model, independently developed by Shenzhen Yuanxiang Technology. Its key features are as follows:
|
22 |
|
23 |
- **Model Structure**: XVERSE-13B uses the mainstream Decoder-only Transformer network structure, supports 8k context length, the longest one among models of the same size, which can meet the need of longer multi-round dialogues, knowledge question-answering, and summarization. This makes the model more versatile in application scenarios.
|
24 |
+
- **Training Data**: The model has been thoroughly trained on a diversified and high-quality dataset consisting of 3.2 trillion of tokens, including more than 40 languages such as Chinese, English, Russian, and Spanish. The sampling ratio of different types of data is finely set, which makes the performance of Chinese and English excellent, and also takes into account the effect of other languages.
|
25 |
+
- **Tokenization**: Based on the BPE (Byte-Pair Encoding) algorithm, a tokenizer with a vocabulary size of 100,534 has been trained using hundreds of gigabytes of language data. This tokenizer is capable of supporting multilingual without the need for additional vocabulary expansion.
|
26 |
- **Training Framework**: Several key technologies have also been independently developed, including efficient operators, memory optimization, parallel scheduling strategies, overlap of data-computation-communication, and synergy between platforms and frameworks. These advancements enhance training efficiency and model stability. With these technologies, the peak computational power utilization rate on a thousand-card cluster can reach 58.5%, ranking at the forefront of the industry.
|
27 |
|
28 |
## 评测结果
|
29 |
|
30 |
+
为了综合评估模型的性能,我们在一系列标准数据集上进行了全面测试,包括C-Eval、CMMLU、Gaokao-Bench、MMLU、GAOKAO-English、AGIEval、RACE-M、CommonSenseQA、PIQA、GSM8K和HumanEval。这些评估覆盖了模型在多个领域的能力,具体包括中文问答、英文问答、语言理解、常识问答、逻辑推理、数学问题解答以及编程能力。评估结果如下:
|
31 |
+
|
32 |
+
| 能力维度 | 数据集 | | XVERSE-13B-2 | XVERSE-13B | Baichuan2-13B | Llama1-13B | Llama2-13B |
|
33 |
+
| :--------: | :------------------------: | :----: | :----------: | :--------: | :-----------: | :--------: | :--------: |
|
34 |
+
| 中文问答 | C-Eval | 5-shot | 63.5 | 54.7 | 58.1 | 28.8 | 35.6 |
|
35 |
+
| | CMMLU | 5-shot | 66.2 | 59.1 | 62.0 | 31.5 | 38.4 |
|
36 |
+
| | Gaokao-Bench<sup>1</sup> | 5-shot | 67.5 | 53.9 | 54.3 | 26.4 | 35.4 |
|
37 |
+
| 英文问答 | MMLU | 5-shot | 61.2 | 55.1 | 59.2 | 46.9 | 54.8 |
|
38 |
+
| | GAOKAO-English<sup>1</sup> | 5-shot | 73.7 | 66.5 | 67.7 | 38.1 | 60.6 |
|
39 |
+
| 中英文问答 | AGIEval<sup>1</sup> | 5-shot | 54.5 | 41.4 | 48.2 | 27.3 | 33.4 |
|
40 |
+
| 语言理解 | RACE-M | 0-shot | 84.6 | 74.2 | 68.9 | 61.6 | 63.0 |
|
41 |
+
| 常识问答 | CommonSenseQA | 7-shot | 74.0 | 69.5 | 65.6 | 62.0 | 67.3 |
|
42 |
+
| 推理 | PIQA | 0-shot | 80.8 | 79.0 | 78.5 | 80.1 | 80.5 |
|
43 |
+
| 数学 | GSM8K | 4-shot | 54.9 | 18.4 | 52.7 | 17.8 | 28.7 |
|
44 |
+
| 代码 | HumanEval | 0-shot | 39.6 | 15.9 | 17.1 | 15.8 | 18.3 |
|
45 |
|
46 |
> <sup>1:只针对其中的单项选择题进行测试,即排除了填空题、开放性问题和多项选择题</sup>
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
对于上述所有比较模型,我们优先汇报其官方公布的结果。在缺少官方结果的情况下,我们采用了 [OpenCompass 榜单](https://opencompass.org.cn/leaderboard-llm)的报告结果。其他结果则来自于我们自行执行的评估流程所获得的数据。
|
49 |
+
对于 MMLU ,我们采用作者提供的[评测工具](https://github.com/hendrycks/test),C-Eval、AGIEval、GAOKAO-Bench、GAOKAO-English 与 MMLU 的评测方式相同,其余评测数据集使用 [OpenCompass 评估框架](https://github.com/open-compass/OpenCompass/)进行评估。
|
50 |
|
51 |
## Model Evaluation
|
52 |
|
53 |
+
To comprehensively assess the performance of the model, we conducted extensive testing across a range of standard datasets, including C-Eval, CMMLU, Gaokao-Bench, MMLU, GAOKAO-English, AGIEval, RACE-M, CommonSenseQA, PIQA, GSM8K and HumanEval. These evaluations spanned multiple capabilities of the model, specifically including Chinese question answering, English question answering, language comprehension, common sense questioning, logical reasoning, mathematical problem-solving, and coding ability. The results of the evaluations are as follows:
|
54 |
+
|
55 |
+
| Capability Dimension | Dataset | | XVERSE-13B-2 | XVERSE-13B | Baichuan2-13B | Llama1-13B | Llama2-13B |
|
56 |
+
| :--------------------: | :------------------------: | :----: | :----------: | :--------: | :-----------: | :--------: | :--------: |
|
57 |
+
| Chinese QA | C-Eval | 5-shot | 63.5 | 54.7 | 58.1 | 28.8 | 35.6 |
|
58 |
+
| | CMMLU | 5-shot | 66.2 | 59.1 | 62.0 | 31.5 | 38.4 |
|
59 |
+
| | Gaokao-Bench<sup>1</sup> | 5-shot | 67.5 | 53.9 | 54.3 | 26.4 | 35.4 |
|
60 |
+
| English QA | MMLU | 5-shot | 61.2 | 55.1 | 59.2 | 46.9 | 54.8 |
|
61 |
+
| | GAOKAO-English<sup>1</sup> | 5-shot | 73.7 | 66.5 | 67.7 | 38.1 | 60.6 |
|
62 |
+
| Chinese & English QA | AGIEval<sup>1</sup> | 5-shot | 54.5 | 41.4 | 48.2 | 27.3 | 33.4 |
|
63 |
+
| Language Understanding | RACE-M | 0-shot | 84.6 | 74.2 | 68.9 | 61.6 | 63.0 |
|
64 |
+
| Common Sense QA | CommonSenseQA | 7-shot | 74.0 | 69.5 | 65.6 | 62.0 | 67.3 |
|
65 |
+
| Reasoning | PIQA | 0-shot | 80.8 | 79.0 | 78.5 | 80.1 | 80.5 |
|
66 |
+
| Math | GSM8K | 4-shot | 54.9 | 18.4 | 52.7 | 17.8 | 28.7 |
|
67 |
+
| Coding | HumanEval | 0-shot | 39.6 | 15.9 | 17.1 | 15.8 | 18.3 |
|
68 |
|
69 |
> <sup>1: Tests are conducted only on single-answer multiple-choice questions, thus excluding fill-in-the-blanks, open-ended questions, and multiple-answer multiple-choice questions.</sup>
|
70 |
+
|
71 |
+
For all the comparison models mentioned above, we prioritize the disclosure of their officially published results. In the absence of official data, we refer to the reported outcomes from [OpenCompass Leaderboard](https://opencompass.org.cn/leaderboard-llm). Results not covered by the aforementioned sources are derived from our own evaluation pipline.
|
72 |
+
For MMLU, we adopt the [evaluation tools](https://github.com/hendrycks/test) provided by the authors, C-Eval, AGIEval, GAOKAO-Bench, GAOKAO-English are the same as MMLU. For the remaining evaluation datasets, the [OpenCompass](https://github.com/open-compass/OpenCompass/) is employed for evaluation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
### Loading with Transformers
|
75 |
|
|
|
89 |
>>> print(tokenizer.batch_decode(generated_ids, skip_special_tokens=True))
|
90 |
```
|
91 |
|
92 |
+
更多细节,包括对话demo、模型微调及量化等,请参考我们的[Github](https://github.com/xverse-ai/XVERSE-13B)。
|
|
|
|
|
93 |
|
94 |
+
For more details, including chat demo, model fine-tuning and quantization, please refer to our [Github](https://github.com/xverse-ai/XVERSE-13B).
|
95 |
|
96 |
## 局限性与免责申明
|
97 |
|
pytorch_model-00003-of-00003.bin → pytorch_model-00001-of-00010.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:340c72360c3fbb2bdf6f98ab9ab8a2678285e5344d1b0a43ac8a05c4723f6f7f
|
3 |
+
size 2508131049
|
pytorch_model-00001-of-00003.bin → pytorch_model-00002-of-00010.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e1f5ac861b0b2bb760f64d526573a0b36d3eaf2f86cd7c65d7147d2a483ad880
|
3 |
+
size 3172057468
|
pytorch_model-00002-of-00003.bin → pytorch_model-00003-of-00010.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e5b048d9f9afca9a97660c8e9afd59d77be3ebfaa8b5993cc83de24b5c5c106
|
3 |
+
size 3172057468
|
pytorch_model-00004-of-00010.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3867d8f4a57d9eacc7f6c74777d743b02bf1bd23336474385a6a5bdc37a670f
|
3 |
+
size 3172057532
|
pytorch_model-00005-of-00010.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d5da23d80349815ef029e6ebfe434b62ccc406419d079af06023c3d571ae1ed
|
3 |
+
size 3172057532
|
pytorch_model-00006-of-00010.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98c6d1632f78291d34a2c7ceeb95a6917fa8569d840a79a53ee8f362375c7c2a
|
3 |
+
size 3172057532
|
pytorch_model-00007-of-00010.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16abf185e57889e0564ac3bfb61970f5e382c916c78a5409e4b47011c5403a21
|
3 |
+
size 3172057532
|
pytorch_model-00008-of-00010.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4c25f7d9baa7e94e9c62520ab4a735dd16a92596c9bdef64d4a3ff6af019244
|
3 |
+
size 3172057532
|
pytorch_model-00009-of-00010.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b85c0810178333d726825e52a28659bf27b9a3a32909a125665b00ff2b9f9b4e
|
3 |
+
size 1693507250
|
pytorch_model-00010-of-00010.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4f71e8ca1c28e9689538e5573e25ff30d4fc142ab520bcd5b2d55ede6ea62590
|
3 |
+
size 1029571307
|
pytorch_model.bin.index.json
CHANGED
@@ -1,410 +1,410 @@
|
|
1 |
{
|
2 |
"metadata": {
|
3 |
-
"total_size":
|
4 |
},
|
5 |
"weight_map": {
|
6 |
-
"lm_head.weight": "pytorch_model-
|
7 |
-
"model.embed_tokens.weight": "pytorch_model-00001-of-
|
8 |
-
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-
|
9 |
-
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-
|
10 |
-
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
11 |
-
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-
|
12 |
-
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
13 |
-
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
14 |
-
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
15 |
-
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
16 |
-
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-
|
17 |
-
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
18 |
-
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-
|
19 |
-
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-
|
20 |
-
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-
|
21 |
-
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-
|
22 |
-
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
23 |
-
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
24 |
-
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
25 |
-
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
26 |
-
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-
|
27 |
-
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
28 |
-
"model.layers.10.input_layernorm.weight": "pytorch_model-
|
29 |
-
"model.layers.10.mlp.down_proj.weight": "pytorch_model-
|
30 |
-
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-
|
31 |
-
"model.layers.10.mlp.up_proj.weight": "pytorch_model-
|
32 |
-
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-
|
33 |
-
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-
|
34 |
-
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-
|
35 |
-
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-
|
36 |
-
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
37 |
-
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-
|
38 |
-
"model.layers.11.input_layernorm.weight": "pytorch_model-
|
39 |
-
"model.layers.11.mlp.down_proj.weight": "pytorch_model-
|
40 |
-
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-
|
41 |
-
"model.layers.11.mlp.up_proj.weight": "pytorch_model-
|
42 |
-
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-
|
43 |
-
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-
|
44 |
-
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-
|
45 |
-
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-
|
46 |
-
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
47 |
-
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-
|
48 |
-
"model.layers.12.input_layernorm.weight": "pytorch_model-
|
49 |
-
"model.layers.12.mlp.down_proj.weight": "pytorch_model-
|
50 |
-
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-
|
51 |
-
"model.layers.12.mlp.up_proj.weight": "pytorch_model-
|
52 |
-
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-
|
53 |
-
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-
|
54 |
-
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-
|
55 |
-
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-
|
56 |
-
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
57 |
-
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-
|
58 |
-
"model.layers.13.input_layernorm.weight": "pytorch_model-
|
59 |
-
"model.layers.13.mlp.down_proj.weight": "pytorch_model-
|
60 |
-
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-
|
61 |
-
"model.layers.13.mlp.up_proj.weight": "pytorch_model-
|
62 |
-
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-
|
63 |
-
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-
|
64 |
-
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-
|
65 |
-
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-
|
66 |
-
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
67 |
-
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-
|
68 |
-
"model.layers.14.input_layernorm.weight": "pytorch_model-
|
69 |
-
"model.layers.14.mlp.down_proj.weight": "pytorch_model-
|
70 |
-
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-
|
71 |
-
"model.layers.14.mlp.up_proj.weight": "pytorch_model-
|
72 |
-
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-
|
73 |
-
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-
|
74 |
-
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-
|
75 |
-
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-
|
76 |
-
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
77 |
-
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-
|
78 |
-
"model.layers.15.input_layernorm.weight": "pytorch_model-
|
79 |
-
"model.layers.15.mlp.down_proj.weight": "pytorch_model-
|
80 |
-
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-
|
81 |
-
"model.layers.15.mlp.up_proj.weight": "pytorch_model-
|
82 |
-
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-
|
83 |
-
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-
|
84 |
-
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-
|
85 |
-
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-
|
86 |
-
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
87 |
-
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-
|
88 |
-
"model.layers.16.input_layernorm.weight": "pytorch_model-
|
89 |
-
"model.layers.16.mlp.down_proj.weight": "pytorch_model-
|
90 |
-
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-
|
91 |
-
"model.layers.16.mlp.up_proj.weight": "pytorch_model-
|
92 |
-
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-
|
93 |
-
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-
|
94 |
-
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-
|
95 |
-
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-
|
96 |
-
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
97 |
-
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-
|
98 |
-
"model.layers.17.input_layernorm.weight": "pytorch_model-
|
99 |
-
"model.layers.17.mlp.down_proj.weight": "pytorch_model-
|
100 |
-
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-
|
101 |
-
"model.layers.17.mlp.up_proj.weight": "pytorch_model-
|
102 |
-
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-
|
103 |
-
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-
|
104 |
-
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-
|
105 |
-
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-
|
106 |
-
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
107 |
-
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-
|
108 |
-
"model.layers.18.input_layernorm.weight": "pytorch_model-
|
109 |
-
"model.layers.18.mlp.down_proj.weight": "pytorch_model-
|
110 |
-
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-
|
111 |
-
"model.layers.18.mlp.up_proj.weight": "pytorch_model-
|
112 |
-
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-
|
113 |
-
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-
|
114 |
-
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-
|
115 |
-
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-
|
116 |
-
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
117 |
-
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-
|
118 |
-
"model.layers.19.input_layernorm.weight": "pytorch_model-
|
119 |
-
"model.layers.19.mlp.down_proj.weight": "pytorch_model-
|
120 |
-
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-
|
121 |
-
"model.layers.19.mlp.up_proj.weight": "pytorch_model-
|
122 |
-
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-
|
123 |
-
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-
|
124 |
-
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-
|
125 |
-
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-
|
126 |
-
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
127 |
-
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-
|
128 |
-
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-
|
129 |
-
"model.layers.2.mlp.down_proj.weight": "pytorch_model-
|
130 |
-
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-
|
131 |
-
"model.layers.2.mlp.up_proj.weight": "pytorch_model-
|
132 |
-
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-
|
133 |
-
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-
|
134 |
-
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-
|
135 |
-
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-
|
136 |
-
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-
|
137 |
-
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-
|
138 |
-
"model.layers.20.input_layernorm.weight": "pytorch_model-
|
139 |
-
"model.layers.20.mlp.down_proj.weight": "pytorch_model-
|
140 |
-
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-
|
141 |
-
"model.layers.20.mlp.up_proj.weight": "pytorch_model-
|
142 |
-
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-
|
143 |
-
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-
|
144 |
-
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-
|
145 |
-
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-
|
146 |
-
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
147 |
-
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-
|
148 |
-
"model.layers.21.input_layernorm.weight": "pytorch_model-
|
149 |
-
"model.layers.21.mlp.down_proj.weight": "pytorch_model-
|
150 |
-
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-
|
151 |
-
"model.layers.21.mlp.up_proj.weight": "pytorch_model-
|
152 |
-
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-
|
153 |
-
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-
|
154 |
-
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-
|
155 |
-
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-
|
156 |
-
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
157 |
-
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-
|
158 |
-
"model.layers.22.input_layernorm.weight": "pytorch_model-
|
159 |
-
"model.layers.22.mlp.down_proj.weight": "pytorch_model-
|
160 |
-
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-
|
161 |
-
"model.layers.22.mlp.up_proj.weight": "pytorch_model-
|
162 |
-
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-
|
163 |
-
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-
|
164 |
-
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-
|
165 |
-
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-
|
166 |
-
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
167 |
-
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-
|
168 |
-
"model.layers.23.input_layernorm.weight": "pytorch_model-
|
169 |
-
"model.layers.23.mlp.down_proj.weight": "pytorch_model-
|
170 |
-
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-
|
171 |
-
"model.layers.23.mlp.up_proj.weight": "pytorch_model-
|
172 |
-
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-
|
173 |
-
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-
|
174 |
-
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-
|
175 |
-
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-
|
176 |
-
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
177 |
-
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-
|
178 |
-
"model.layers.24.input_layernorm.weight": "pytorch_model-
|
179 |
-
"model.layers.24.mlp.down_proj.weight": "pytorch_model-
|
180 |
-
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-
|
181 |
-
"model.layers.24.mlp.up_proj.weight": "pytorch_model-
|
182 |
-
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-
|
183 |
-
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-
|
184 |
-
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-
|
185 |
-
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-
|
186 |
-
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
187 |
-
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-
|
188 |
-
"model.layers.25.input_layernorm.weight": "pytorch_model-
|
189 |
-
"model.layers.25.mlp.down_proj.weight": "pytorch_model-
|
190 |
-
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-
|
191 |
-
"model.layers.25.mlp.up_proj.weight": "pytorch_model-
|
192 |
-
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-
|
193 |
-
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-
|
194 |
-
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-
|
195 |
-
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-
|
196 |
-
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
197 |
-
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-
|
198 |
-
"model.layers.26.input_layernorm.weight": "pytorch_model-
|
199 |
-
"model.layers.26.mlp.down_proj.weight": "pytorch_model-
|
200 |
-
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-
|
201 |
-
"model.layers.26.mlp.up_proj.weight": "pytorch_model-
|
202 |
-
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-
|
203 |
-
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-
|
204 |
-
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-
|
205 |
-
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-
|
206 |
-
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
207 |
-
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-
|
208 |
-
"model.layers.27.input_layernorm.weight": "pytorch_model-
|
209 |
-
"model.layers.27.mlp.down_proj.weight": "pytorch_model-
|
210 |
-
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-
|
211 |
-
"model.layers.27.mlp.up_proj.weight": "pytorch_model-
|
212 |
-
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-
|
213 |
-
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-
|
214 |
-
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-
|
215 |
-
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-
|
216 |
-
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
217 |
-
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-
|
218 |
-
"model.layers.28.input_layernorm.weight": "pytorch_model-
|
219 |
-
"model.layers.28.mlp.down_proj.weight": "pytorch_model-
|
220 |
-
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-
|
221 |
-
"model.layers.28.mlp.up_proj.weight": "pytorch_model-
|
222 |
-
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-
|
223 |
-
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-
|
224 |
-
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-
|
225 |
-
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-
|
226 |
-
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
227 |
-
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-
|
228 |
-
"model.layers.29.input_layernorm.weight": "pytorch_model-
|
229 |
-
"model.layers.29.mlp.down_proj.weight": "pytorch_model-
|
230 |
-
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-
|
231 |
-
"model.layers.29.mlp.up_proj.weight": "pytorch_model-
|
232 |
-
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-
|
233 |
-
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-
|
234 |
-
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-
|
235 |
-
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-
|
236 |
-
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
237 |
-
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-
|
238 |
-
"model.layers.3.input_layernorm.weight": "pytorch_model-
|
239 |
-
"model.layers.3.mlp.down_proj.weight": "pytorch_model-
|
240 |
-
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-
|
241 |
-
"model.layers.3.mlp.up_proj.weight": "pytorch_model-
|
242 |
-
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-
|
243 |
-
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-
|
244 |
-
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-
|
245 |
-
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-
|
246 |
-
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
247 |
-
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-
|
248 |
-
"model.layers.30.input_layernorm.weight": "pytorch_model-
|
249 |
-
"model.layers.30.mlp.down_proj.weight": "pytorch_model-
|
250 |
-
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-
|
251 |
-
"model.layers.30.mlp.up_proj.weight": "pytorch_model-
|
252 |
-
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-
|
253 |
-
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-
|
254 |
-
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-
|
255 |
-
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-
|
256 |
-
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
257 |
-
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-
|
258 |
-
"model.layers.31.input_layernorm.weight": "pytorch_model-
|
259 |
-
"model.layers.31.mlp.down_proj.weight": "pytorch_model-
|
260 |
-
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-
|
261 |
-
"model.layers.31.mlp.up_proj.weight": "pytorch_model-
|
262 |
-
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-
|
263 |
-
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-
|
264 |
-
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-
|
265 |
-
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-
|
266 |
-
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
267 |
-
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-
|
268 |
-
"model.layers.32.input_layernorm.weight": "pytorch_model-
|
269 |
-
"model.layers.32.mlp.down_proj.weight": "pytorch_model-
|
270 |
-
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-
|
271 |
-
"model.layers.32.mlp.up_proj.weight": "pytorch_model-
|
272 |
-
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-
|
273 |
-
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-
|
274 |
-
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-
|
275 |
-
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-
|
276 |
-
"model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
277 |
-
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-
|
278 |
-
"model.layers.33.input_layernorm.weight": "pytorch_model-
|
279 |
-
"model.layers.33.mlp.down_proj.weight": "pytorch_model-
|
280 |
-
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-
|
281 |
-
"model.layers.33.mlp.up_proj.weight": "pytorch_model-
|
282 |
-
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-
|
283 |
-
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-
|
284 |
-
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-
|
285 |
-
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-
|
286 |
-
"model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
287 |
-
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-
|
288 |
-
"model.layers.34.input_layernorm.weight": "pytorch_model-
|
289 |
-
"model.layers.34.mlp.down_proj.weight": "pytorch_model-
|
290 |
-
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-
|
291 |
-
"model.layers.34.mlp.up_proj.weight": "pytorch_model-
|
292 |
-
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-
|
293 |
-
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-
|
294 |
-
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-
|
295 |
-
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-
|
296 |
-
"model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
297 |
-
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-
|
298 |
-
"model.layers.35.input_layernorm.weight": "pytorch_model-
|
299 |
-
"model.layers.35.mlp.down_proj.weight": "pytorch_model-
|
300 |
-
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-
|
301 |
-
"model.layers.35.mlp.up_proj.weight": "pytorch_model-
|
302 |
-
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-
|
303 |
-
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-
|
304 |
-
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-
|
305 |
-
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-
|
306 |
-
"model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
307 |
-
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-
|
308 |
-
"model.layers.36.input_layernorm.weight": "pytorch_model-
|
309 |
-
"model.layers.36.mlp.down_proj.weight": "pytorch_model-
|
310 |
-
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-
|
311 |
-
"model.layers.36.mlp.up_proj.weight": "pytorch_model-
|
312 |
-
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-
|
313 |
-
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-
|
314 |
-
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-
|
315 |
-
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-
|
316 |
-
"model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
317 |
-
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-
|
318 |
-
"model.layers.37.input_layernorm.weight": "pytorch_model-
|
319 |
-
"model.layers.37.mlp.down_proj.weight": "pytorch_model-
|
320 |
-
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-
|
321 |
-
"model.layers.37.mlp.up_proj.weight": "pytorch_model-
|
322 |
-
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-
|
323 |
-
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-
|
324 |
-
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-
|
325 |
-
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-
|
326 |
-
"model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
327 |
-
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-
|
328 |
-
"model.layers.38.input_layernorm.weight": "pytorch_model-
|
329 |
-
"model.layers.38.mlp.down_proj.weight": "pytorch_model-
|
330 |
-
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-
|
331 |
-
"model.layers.38.mlp.up_proj.weight": "pytorch_model-
|
332 |
-
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-
|
333 |
-
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-
|
334 |
-
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-
|
335 |
-
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-
|
336 |
-
"model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
337 |
-
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-
|
338 |
-
"model.layers.39.input_layernorm.weight": "pytorch_model-
|
339 |
-
"model.layers.39.mlp.down_proj.weight": "pytorch_model-
|
340 |
-
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-
|
341 |
-
"model.layers.39.mlp.up_proj.weight": "pytorch_model-
|
342 |
-
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-
|
343 |
-
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-
|
344 |
-
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-
|
345 |
-
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-
|
346 |
-
"model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
347 |
-
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-
|
348 |
-
"model.layers.4.input_layernorm.weight": "pytorch_model-
|
349 |
-
"model.layers.4.mlp.down_proj.weight": "pytorch_model-
|
350 |
-
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-
|
351 |
-
"model.layers.4.mlp.up_proj.weight": "pytorch_model-
|
352 |
-
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-
|
353 |
-
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-
|
354 |
-
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-
|
355 |
-
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-
|
356 |
-
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
357 |
-
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-
|
358 |
-
"model.layers.5.input_layernorm.weight": "pytorch_model-
|
359 |
-
"model.layers.5.mlp.down_proj.weight": "pytorch_model-
|
360 |
-
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-
|
361 |
-
"model.layers.5.mlp.up_proj.weight": "pytorch_model-
|
362 |
-
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-
|
363 |
-
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-
|
364 |
-
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-
|
365 |
-
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-
|
366 |
-
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
367 |
-
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-
|
368 |
-
"model.layers.6.input_layernorm.weight": "pytorch_model-
|
369 |
-
"model.layers.6.mlp.down_proj.weight": "pytorch_model-
|
370 |
-
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-
|
371 |
-
"model.layers.6.mlp.up_proj.weight": "pytorch_model-
|
372 |
-
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-
|
373 |
-
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-
|
374 |
-
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-
|
375 |
-
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-
|
376 |
-
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
377 |
-
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-
|
378 |
-
"model.layers.7.input_layernorm.weight": "pytorch_model-
|
379 |
-
"model.layers.7.mlp.down_proj.weight": "pytorch_model-
|
380 |
-
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-
|
381 |
-
"model.layers.7.mlp.up_proj.weight": "pytorch_model-
|
382 |
-
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-
|
383 |
-
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-
|
384 |
-
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-
|
385 |
-
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-
|
386 |
-
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
387 |
-
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-
|
388 |
-
"model.layers.8.input_layernorm.weight": "pytorch_model-
|
389 |
-
"model.layers.8.mlp.down_proj.weight": "pytorch_model-
|
390 |
-
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-
|
391 |
-
"model.layers.8.mlp.up_proj.weight": "pytorch_model-
|
392 |
-
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-
|
393 |
-
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-
|
394 |
-
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-
|
395 |
-
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-
|
396 |
-
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
397 |
-
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-
|
398 |
-
"model.layers.9.input_layernorm.weight": "pytorch_model-
|
399 |
-
"model.layers.9.mlp.down_proj.weight": "pytorch_model-
|
400 |
-
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-
|
401 |
-
"model.layers.9.mlp.up_proj.weight": "pytorch_model-
|
402 |
-
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-
|
403 |
-
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-
|
404 |
-
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-
|
405 |
-
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-
|
406 |
-
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-
|
407 |
-
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-
|
408 |
-
"model.norm.weight": "pytorch_model-
|
409 |
}
|
410 |
}
|
|
|
1 |
{
|
2 |
"metadata": {
|
3 |
+
"total_size": 17578695680
|
4 |
},
|
5 |
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00010-of-00010.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00010.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00010.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00010.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00010.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00010.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00010.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00010.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00010.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00010.bin",
|
16 |
+
"model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00010.bin",
|
17 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00010.bin",
|
18 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00010.bin",
|
19 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00010.bin",
|
20 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00010.bin",
|
21 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00010.bin",
|
22 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00010.bin",
|
23 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00010.bin",
|
24 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00010.bin",
|
25 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00010.bin",
|
26 |
+
"model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00010.bin",
|
27 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00010.bin",
|
28 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00003-of-00010.bin",
|
29 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00003-of-00010.bin",
|
30 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00003-of-00010.bin",
|
31 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00003-of-00010.bin",
|
32 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00003-of-00010.bin",
|
33 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00003-of-00010.bin",
|
34 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00003-of-00010.bin",
|
35 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00003-of-00010.bin",
|
36 |
+
"model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00010.bin",
|
37 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00003-of-00010.bin",
|
38 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00003-of-00010.bin",
|
39 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00003-of-00010.bin",
|
40 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00003-of-00010.bin",
|
41 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00003-of-00010.bin",
|
42 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00003-of-00010.bin",
|
43 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00003-of-00010.bin",
|
44 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00003-of-00010.bin",
|
45 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00003-of-00010.bin",
|
46 |
+
"model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00010.bin",
|
47 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00003-of-00010.bin",
|
48 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00003-of-00010.bin",
|
49 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00004-of-00010.bin",
|
50 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00004-of-00010.bin",
|
51 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00004-of-00010.bin",
|
52 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00003-of-00010.bin",
|
53 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00003-of-00010.bin",
|
54 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00003-of-00010.bin",
|
55 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00003-of-00010.bin",
|
56 |
+
"model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00010.bin",
|
57 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00003-of-00010.bin",
|
58 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00004-of-00010.bin",
|
59 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00004-of-00010.bin",
|
60 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00004-of-00010.bin",
|
61 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00004-of-00010.bin",
|
62 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00004-of-00010.bin",
|
63 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00004-of-00010.bin",
|
64 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00004-of-00010.bin",
|
65 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00004-of-00010.bin",
|
66 |
+
"model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00010.bin",
|
67 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00004-of-00010.bin",
|
68 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00004-of-00010.bin",
|
69 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00004-of-00010.bin",
|
70 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00004-of-00010.bin",
|
71 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00004-of-00010.bin",
|
72 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00004-of-00010.bin",
|
73 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00004-of-00010.bin",
|
74 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00004-of-00010.bin",
|
75 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00004-of-00010.bin",
|
76 |
+
"model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00010.bin",
|
77 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00004-of-00010.bin",
|
78 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00004-of-00010.bin",
|
79 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00004-of-00010.bin",
|
80 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00004-of-00010.bin",
|
81 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00004-of-00010.bin",
|
82 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00004-of-00010.bin",
|
83 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00004-of-00010.bin",
|
84 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00004-of-00010.bin",
|
85 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00004-of-00010.bin",
|
86 |
+
"model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00010.bin",
|
87 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00004-of-00010.bin",
|
88 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00004-of-00010.bin",
|
89 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00004-of-00010.bin",
|
90 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00004-of-00010.bin",
|
91 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00004-of-00010.bin",
|
92 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00004-of-00010.bin",
|
93 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00004-of-00010.bin",
|
94 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00004-of-00010.bin",
|
95 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00004-of-00010.bin",
|
96 |
+
"model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00010.bin",
|
97 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00004-of-00010.bin",
|
98 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00004-of-00010.bin",
|
99 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00005-of-00010.bin",
|
100 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00005-of-00010.bin",
|
101 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00005-of-00010.bin",
|
102 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00004-of-00010.bin",
|
103 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00004-of-00010.bin",
|
104 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00004-of-00010.bin",
|
105 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00004-of-00010.bin",
|
106 |
+
"model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00010.bin",
|
107 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00004-of-00010.bin",
|
108 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00005-of-00010.bin",
|
109 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00005-of-00010.bin",
|
110 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00005-of-00010.bin",
|
111 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00005-of-00010.bin",
|
112 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00005-of-00010.bin",
|
113 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00005-of-00010.bin",
|
114 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00005-of-00010.bin",
|
115 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00005-of-00010.bin",
|
116 |
+
"model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00010.bin",
|
117 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00005-of-00010.bin",
|
118 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00005-of-00010.bin",
|
119 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00005-of-00010.bin",
|
120 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00005-of-00010.bin",
|
121 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00005-of-00010.bin",
|
122 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00005-of-00010.bin",
|
123 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00005-of-00010.bin",
|
124 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00005-of-00010.bin",
|
125 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00005-of-00010.bin",
|
126 |
+
"model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00010.bin",
|
127 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00005-of-00010.bin",
|
128 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00010.bin",
|
129 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00002-of-00010.bin",
|
130 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00002-of-00010.bin",
|
131 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00002-of-00010.bin",
|
132 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00010.bin",
|
133 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00010.bin",
|
134 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00010.bin",
|
135 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00010.bin",
|
136 |
+
"model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00010.bin",
|
137 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00010.bin",
|
138 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00005-of-00010.bin",
|
139 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00005-of-00010.bin",
|
140 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00005-of-00010.bin",
|
141 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00005-of-00010.bin",
|
142 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00005-of-00010.bin",
|
143 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00005-of-00010.bin",
|
144 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00005-of-00010.bin",
|
145 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00005-of-00010.bin",
|
146 |
+
"model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00010.bin",
|
147 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00005-of-00010.bin",
|
148 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00005-of-00010.bin",
|
149 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00005-of-00010.bin",
|
150 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00005-of-00010.bin",
|
151 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00005-of-00010.bin",
|
152 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00005-of-00010.bin",
|
153 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00005-of-00010.bin",
|
154 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00005-of-00010.bin",
|
155 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00005-of-00010.bin",
|
156 |
+
"model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00010.bin",
|
157 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00005-of-00010.bin",
|
158 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00005-of-00010.bin",
|
159 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00006-of-00010.bin",
|
160 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00006-of-00010.bin",
|
161 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00006-of-00010.bin",
|
162 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00005-of-00010.bin",
|
163 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00005-of-00010.bin",
|
164 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00005-of-00010.bin",
|
165 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00005-of-00010.bin",
|
166 |
+
"model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00010.bin",
|
167 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00005-of-00010.bin",
|
168 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00006-of-00010.bin",
|
169 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00006-of-00010.bin",
|
170 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00006-of-00010.bin",
|
171 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00006-of-00010.bin",
|
172 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00006-of-00010.bin",
|
173 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00006-of-00010.bin",
|
174 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00006-of-00010.bin",
|
175 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00006-of-00010.bin",
|
176 |
+
"model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00010.bin",
|
177 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00006-of-00010.bin",
|
178 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00006-of-00010.bin",
|
179 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00006-of-00010.bin",
|
180 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00006-of-00010.bin",
|
181 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00006-of-00010.bin",
|
182 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00006-of-00010.bin",
|
183 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00006-of-00010.bin",
|
184 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00006-of-00010.bin",
|
185 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00006-of-00010.bin",
|
186 |
+
"model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00010.bin",
|
187 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00006-of-00010.bin",
|
188 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00006-of-00010.bin",
|
189 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00006-of-00010.bin",
|
190 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00006-of-00010.bin",
|
191 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00006-of-00010.bin",
|
192 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00006-of-00010.bin",
|
193 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00006-of-00010.bin",
|
194 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00006-of-00010.bin",
|
195 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00006-of-00010.bin",
|
196 |
+
"model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00010.bin",
|
197 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00006-of-00010.bin",
|
198 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00006-of-00010.bin",
|
199 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00006-of-00010.bin",
|
200 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00006-of-00010.bin",
|
201 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00006-of-00010.bin",
|
202 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00006-of-00010.bin",
|
203 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00006-of-00010.bin",
|
204 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00006-of-00010.bin",
|
205 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00006-of-00010.bin",
|
206 |
+
"model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00010.bin",
|
207 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00006-of-00010.bin",
|
208 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00006-of-00010.bin",
|
209 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00007-of-00010.bin",
|
210 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00007-of-00010.bin",
|
211 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00007-of-00010.bin",
|
212 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00006-of-00010.bin",
|
213 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00006-of-00010.bin",
|
214 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00006-of-00010.bin",
|
215 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00006-of-00010.bin",
|
216 |
+
"model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00010.bin",
|
217 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00006-of-00010.bin",
|
218 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00007-of-00010.bin",
|
219 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00007-of-00010.bin",
|
220 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00007-of-00010.bin",
|
221 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00007-of-00010.bin",
|
222 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00007-of-00010.bin",
|
223 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00007-of-00010.bin",
|
224 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00007-of-00010.bin",
|
225 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00007-of-00010.bin",
|
226 |
+
"model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00010.bin",
|
227 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00007-of-00010.bin",
|
228 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00007-of-00010.bin",
|
229 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00007-of-00010.bin",
|
230 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00007-of-00010.bin",
|
231 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00007-of-00010.bin",
|
232 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00007-of-00010.bin",
|
233 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00007-of-00010.bin",
|
234 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00007-of-00010.bin",
|
235 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00007-of-00010.bin",
|
236 |
+
"model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00010.bin",
|
237 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00007-of-00010.bin",
|
238 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00002-of-00010.bin",
|
239 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00002-of-00010.bin",
|
240 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00002-of-00010.bin",
|
241 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00002-of-00010.bin",
|
242 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00002-of-00010.bin",
|
243 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00002-of-00010.bin",
|
244 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00002-of-00010.bin",
|
245 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00002-of-00010.bin",
|
246 |
+
"model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00010.bin",
|
247 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00002-of-00010.bin",
|
248 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00007-of-00010.bin",
|
249 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00007-of-00010.bin",
|
250 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00007-of-00010.bin",
|
251 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00007-of-00010.bin",
|
252 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00007-of-00010.bin",
|
253 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00007-of-00010.bin",
|
254 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00007-of-00010.bin",
|
255 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00007-of-00010.bin",
|
256 |
+
"model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00010.bin",
|
257 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00007-of-00010.bin",
|
258 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00007-of-00010.bin",
|
259 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00007-of-00010.bin",
|
260 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00007-of-00010.bin",
|
261 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00007-of-00010.bin",
|
262 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00007-of-00010.bin",
|
263 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00007-of-00010.bin",
|
264 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00007-of-00010.bin",
|
265 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00007-of-00010.bin",
|
266 |
+
"model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00010.bin",
|
267 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00007-of-00010.bin",
|
268 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00007-of-00010.bin",
|
269 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00008-of-00010.bin",
|
270 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00008-of-00010.bin",
|
271 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00008-of-00010.bin",
|
272 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00007-of-00010.bin",
|
273 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00007-of-00010.bin",
|
274 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00007-of-00010.bin",
|
275 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00007-of-00010.bin",
|
276 |
+
"model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00007-of-00010.bin",
|
277 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00007-of-00010.bin",
|
278 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00008-of-00010.bin",
|
279 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00008-of-00010.bin",
|
280 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00008-of-00010.bin",
|
281 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00008-of-00010.bin",
|
282 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00008-of-00010.bin",
|
283 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00008-of-00010.bin",
|
284 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00008-of-00010.bin",
|
285 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00008-of-00010.bin",
|
286 |
+
"model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00010.bin",
|
287 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00008-of-00010.bin",
|
288 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00008-of-00010.bin",
|
289 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00008-of-00010.bin",
|
290 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00008-of-00010.bin",
|
291 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00008-of-00010.bin",
|
292 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00008-of-00010.bin",
|
293 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00008-of-00010.bin",
|
294 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00008-of-00010.bin",
|
295 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00008-of-00010.bin",
|
296 |
+
"model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00010.bin",
|
297 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00008-of-00010.bin",
|
298 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00008-of-00010.bin",
|
299 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00008-of-00010.bin",
|
300 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00008-of-00010.bin",
|
301 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00008-of-00010.bin",
|
302 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00008-of-00010.bin",
|
303 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00008-of-00010.bin",
|
304 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00008-of-00010.bin",
|
305 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00008-of-00010.bin",
|
306 |
+
"model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00010.bin",
|
307 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00008-of-00010.bin",
|
308 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00008-of-00010.bin",
|
309 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00008-of-00010.bin",
|
310 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00008-of-00010.bin",
|
311 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00008-of-00010.bin",
|
312 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00008-of-00010.bin",
|
313 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00008-of-00010.bin",
|
314 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00008-of-00010.bin",
|
315 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00008-of-00010.bin",
|
316 |
+
"model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00010.bin",
|
317 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00008-of-00010.bin",
|
318 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00008-of-00010.bin",
|
319 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00009-of-00010.bin",
|
320 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00009-of-00010.bin",
|
321 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00009-of-00010.bin",
|
322 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00008-of-00010.bin",
|
323 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00008-of-00010.bin",
|
324 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00008-of-00010.bin",
|
325 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00008-of-00010.bin",
|
326 |
+
"model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00008-of-00010.bin",
|
327 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00008-of-00010.bin",
|
328 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00009-of-00010.bin",
|
329 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00009-of-00010.bin",
|
330 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00009-of-00010.bin",
|
331 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00009-of-00010.bin",
|
332 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00009-of-00010.bin",
|
333 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00009-of-00010.bin",
|
334 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00009-of-00010.bin",
|
335 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00009-of-00010.bin",
|
336 |
+
"model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00010.bin",
|
337 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00009-of-00010.bin",
|
338 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00009-of-00010.bin",
|
339 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00009-of-00010.bin",
|
340 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00009-of-00010.bin",
|
341 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00009-of-00010.bin",
|
342 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00009-of-00010.bin",
|
343 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00009-of-00010.bin",
|
344 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00009-of-00010.bin",
|
345 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00009-of-00010.bin",
|
346 |
+
"model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00009-of-00010.bin",
|
347 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00009-of-00010.bin",
|
348 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00002-of-00010.bin",
|
349 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00002-of-00010.bin",
|
350 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00002-of-00010.bin",
|
351 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00002-of-00010.bin",
|
352 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00002-of-00010.bin",
|
353 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00002-of-00010.bin",
|
354 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00002-of-00010.bin",
|
355 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00002-of-00010.bin",
|
356 |
+
"model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00010.bin",
|
357 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00002-of-00010.bin",
|
358 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00002-of-00010.bin",
|
359 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00002-of-00010.bin",
|
360 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00002-of-00010.bin",
|
361 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00002-of-00010.bin",
|
362 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00002-of-00010.bin",
|
363 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00002-of-00010.bin",
|
364 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00002-of-00010.bin",
|
365 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00002-of-00010.bin",
|
366 |
+
"model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00010.bin",
|
367 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00002-of-00010.bin",
|
368 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00002-of-00010.bin",
|
369 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00002-of-00010.bin",
|
370 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00002-of-00010.bin",
|
371 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00002-of-00010.bin",
|
372 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00002-of-00010.bin",
|
373 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00002-of-00010.bin",
|
374 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00002-of-00010.bin",
|
375 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00002-of-00010.bin",
|
376 |
+
"model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00010.bin",
|
377 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00002-of-00010.bin",
|
378 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00010.bin",
|
379 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00003-of-00010.bin",
|
380 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00003-of-00010.bin",
|
381 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00003-of-00010.bin",
|
382 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00010.bin",
|
383 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00010.bin",
|
384 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00002-of-00010.bin",
|
385 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00010.bin",
|
386 |
+
"model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00010.bin",
|
387 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00010.bin",
|
388 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00003-of-00010.bin",
|
389 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00003-of-00010.bin",
|
390 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00003-of-00010.bin",
|
391 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00003-of-00010.bin",
|
392 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00003-of-00010.bin",
|
393 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00003-of-00010.bin",
|
394 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00003-of-00010.bin",
|
395 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00003-of-00010.bin",
|
396 |
+
"model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00010.bin",
|
397 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00003-of-00010.bin",
|
398 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00003-of-00010.bin",
|
399 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00003-of-00010.bin",
|
400 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00003-of-00010.bin",
|
401 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00003-of-00010.bin",
|
402 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00003-of-00010.bin",
|
403 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00003-of-00010.bin",
|
404 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00003-of-00010.bin",
|
405 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00003-of-00010.bin",
|
406 |
+
"model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00010.bin",
|
407 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00003-of-00010.bin",
|
408 |
+
"model.norm.weight": "pytorch_model-00009-of-00010.bin"
|
409 |
}
|
410 |
}
|