yahyaabd commited on
Commit
f3e4fa1
·
verified ·
1 Parent(s): 642d184

Add new SentenceTransformer model

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:79621
8
+ - loss:CosineSimilarityLoss
9
+ base_model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: Data demografi Indonesia 2021 perempuan dan lakilaki
12
+ sentences:
13
+ - Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut Komoditi HS, Februari
14
+ 2015
15
+ - Statistik Potensi Desa Provinsi Jawa Barat 2014
16
+ - Pengeluaran untuk Konsumsi Penduduk Indonesia, September 2017
17
+ - source_sentence: Data analisis tematik kependudukan Indonesia migrasi dan ketenagakerjaan
18
+ sentences:
19
+ - Direktori Perusahaan Industri Penggilingan Padi Tahun 2012 Provinsi Bengkulu
20
+ - Buletin Statistik Perdagangan Luar Negeri Ekspor Menurut HS, Juni 2023
21
+ - Luas Panen dan Produksi Padi 2022
22
+ - source_sentence: Daftar perusahaan penggilingan padi Kalimantan
23
+ sentences:
24
+ - Ringkasan Neraca Arus Dana, Triwulan II, 2011*), (Miliar Rupiah)
25
+ - Klasifikasi Baku Komoditas Indonesia 2012 Buku 1
26
+ - Statistik Penduduk Lanjut Usia Provinsi Nusa Tenggara Barat 2010-Hasil Sensus
27
+ Penduduk 2010
28
+ - source_sentence: Perdagangan luar negeri impor Januari 2010
29
+ sentences:
30
+ - Buletin Statistik Perdagangan Luar Negeri Impor Januari 2010
31
+ - Statistik Tanaman Sayuran dan Buah-buahan Semusim Indonesia 2012
32
+ - Klasifikasi Baku Komoditas Indonesia (KBKI) 2012 Buku 4
33
+ - source_sentence: Biaya hidup kelompok perumahan Indonesia 2017
34
+ sentences:
35
+ - Indeks Harga Perdagangan Besar 2007
36
+ - Statistik Upah 2013
37
+ - Survei Biaya Hidup (SBH) 2018 Bulukumba, Watampone, Makassar, Pare-Pare, dan Palopo
38
+ datasets:
39
+ - yahyaabd/allstats-search-pairs-dataset
40
+ pipeline_tag: sentence-similarity
41
+ library_name: sentence-transformers
42
+ metrics:
43
+ - pearson_cosine
44
+ - spearman_cosine
45
+ model-index:
46
+ - name: SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
47
+ results:
48
+ - task:
49
+ type: semantic-similarity
50
+ name: Semantic Similarity
51
+ dataset:
52
+ name: allstats semantic mpnet eval
53
+ type: allstats-semantic-mpnet-eval
54
+ metrics:
55
+ - type: pearson_cosine
56
+ value: 0.9832636747278353
57
+ name: Pearson Cosine
58
+ - type: spearman_cosine
59
+ value: 0.8514737414469329
60
+ name: Spearman Cosine
61
+ - task:
62
+ type: semantic-similarity
63
+ name: Semantic Similarity
64
+ dataset:
65
+ name: allstats semantic mpnet test
66
+ type: allstats-semantic-mpnet-test
67
+ metrics:
68
+ - type: pearson_cosine
69
+ value: 0.9832774320084267
70
+ name: Pearson Cosine
71
+ - type: spearman_cosine
72
+ value: 0.8521298612131248
73
+ name: Spearman Cosine
74
+ ---
75
+
76
+ # SentenceTransformer based on sentence-transformers/paraphrase-multilingual-mpnet-base-v2
77
+
78
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) on the [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
79
+
80
+ ## Model Details
81
+
82
+ ### Model Description
83
+ - **Model Type:** Sentence Transformer
84
+ - **Base model:** [sentence-transformers/paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-mpnet-base-v2) <!-- at revision 75c57757a97f90ad739aca51fa8bfea0e485a7f2 -->
85
+ - **Maximum Sequence Length:** 128 tokens
86
+ - **Output Dimensionality:** 768 dimensions
87
+ - **Similarity Function:** Cosine Similarity
88
+ - **Training Dataset:**
89
+ - [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset)
90
+ <!-- - **Language:** Unknown -->
91
+ <!-- - **License:** Unknown -->
92
+
93
+ ### Model Sources
94
+
95
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
96
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
97
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
98
+
99
+ ### Full Model Architecture
100
+
101
+ ```
102
+ SentenceTransformer(
103
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
104
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
105
+ )
106
+ ```
107
+
108
+ ## Usage
109
+
110
+ ### Direct Usage (Sentence Transformers)
111
+
112
+ First install the Sentence Transformers library:
113
+
114
+ ```bash
115
+ pip install -U sentence-transformers
116
+ ```
117
+
118
+ Then you can load this model and run inference.
119
+ ```python
120
+ from sentence_transformers import SentenceTransformer
121
+
122
+ # Download from the 🤗 Hub
123
+ model = SentenceTransformer("yahyaabd/allstats-v1-1")
124
+ # Run inference
125
+ sentences = [
126
+ 'Biaya hidup kelompok perumahan Indonesia 2017',
127
+ 'Statistik Upah 2013',
128
+ 'Survei Biaya Hidup (SBH) 2018 Bulukumba, Watampone, Makassar, Pare-Pare, dan Palopo',
129
+ ]
130
+ embeddings = model.encode(sentences)
131
+ print(embeddings.shape)
132
+ # [3, 768]
133
+
134
+ # Get the similarity scores for the embeddings
135
+ similarities = model.similarity(embeddings, embeddings)
136
+ print(similarities.shape)
137
+ # [3, 3]
138
+ ```
139
+
140
+ <!--
141
+ ### Direct Usage (Transformers)
142
+
143
+ <details><summary>Click to see the direct usage in Transformers</summary>
144
+
145
+ </details>
146
+ -->
147
+
148
+ <!--
149
+ ### Downstream Usage (Sentence Transformers)
150
+
151
+ You can finetune this model on your own dataset.
152
+
153
+ <details><summary>Click to expand</summary>
154
+
155
+ </details>
156
+ -->
157
+
158
+ <!--
159
+ ### Out-of-Scope Use
160
+
161
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
162
+ -->
163
+
164
+ ## Evaluation
165
+
166
+ ### Metrics
167
+
168
+ #### Semantic Similarity
169
+
170
+ * Datasets: `allstats-semantic-mpnet-eval` and `allstats-semantic-mpnet-test`
171
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
172
+
173
+ | Metric | allstats-semantic-mpnet-eval | allstats-semantic-mpnet-test |
174
+ |:--------------------|:-----------------------------|:-----------------------------|
175
+ | pearson_cosine | 0.9833 | 0.9833 |
176
+ | **spearman_cosine** | **0.8515** | **0.8521** |
177
+
178
+ <!--
179
+ ## Bias, Risks and Limitations
180
+
181
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
182
+ -->
183
+
184
+ <!--
185
+ ### Recommendations
186
+
187
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
188
+ -->
189
+
190
+ ## Training Details
191
+
192
+ ### Training Dataset
193
+
194
+ #### allstats-search-pairs-dataset
195
+
196
+ * Dataset: [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset) at [6712cb1](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset/tree/6712cb14bbd89da6f87890ac082b09e0adb7a02e)
197
+ * Size: 79,621 training samples
198
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
199
+ * Approximate statistics based on the first 1000 samples:
200
+ | | query | doc | label |
201
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|
202
+ | type | string | string | float |
203
+ | details | <ul><li>min: 5 tokens</li><li>mean: 10.78 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.73 tokens</li><li>max: 58 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.44</li><li>max: 0.99</li></ul> |
204
+ * Samples:
205
+ | query | doc | label |
206
+ |:--------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------|:------------------|
207
+ | <code>Produksi jagung di Indonesia tahun 2009</code> | <code>Indeks Unit Value Ekspor Menurut Kode SITC Bulan Februari 2024</code> | <code>0.1</code> |
208
+ | <code>Data produksi industri manufaktur 2021</code> | <code>Perkembangan Indeks Produksi Industri Manufaktur 2021</code> | <code>0.96</code> |
209
+ | <code>direktori perusahaan industri penggilingan padi tahun 2012 provinsi sulawesi utara dan gorontalo</code> | <code>Neraca Pemerintahan Umum Indonesia 2007-2012</code> | <code>0.03</code> |
210
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
211
+ ```json
212
+ {
213
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
214
+ }
215
+ ```
216
+
217
+ ### Evaluation Dataset
218
+
219
+ #### allstats-search-pairs-dataset
220
+
221
+ * Dataset: [allstats-search-pairs-dataset](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset) at [6712cb1](https://huggingface.co/datasets/yahyaabd/allstats-search-pairs-dataset/tree/6712cb14bbd89da6f87890ac082b09e0adb7a02e)
222
+ * Size: 9,952 evaluation samples
223
+ * Columns: <code>query</code>, <code>doc</code>, and <code>label</code>
224
+ * Approximate statistics based on the first 1000 samples:
225
+ | | query | doc | label |
226
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------|
227
+ | type | string | string | float |
228
+ | details | <ul><li>min: 5 tokens</li><li>mean: 10.75 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.09 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>min: 0.01</li><li>mean: 0.48</li><li>max: 0.99</li></ul> |
229
+ * Samples:
230
+ | query | doc | label |
231
+ |:--------------------------------------------------------------------|:-----------------------------------------------------------------|:------------------|
232
+ | <code>Daftar perusahaan industri pengolahan skala kecil 2006</code> | <code>Statistik Migrasi Nusa Tenggara Barat Hasil SP 2010</code> | <code>0.05</code> |
233
+ | <code>Populasi Indonesia per provinsi 2000-2010</code> | <code>Indikator Ekonomi Desember 2023</code> | <code>0.08</code> |
234
+ | <code>Data harga barang desa non-pangan tahun 2022</code> | <code>Statistik Kunjungan Tamu Asing 2004</code> | <code>0.1</code> |
235
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
236
+ ```json
237
+ {
238
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
239
+ }
240
+ ```
241
+
242
+ ### Training Hyperparameters
243
+ #### Non-Default Hyperparameters
244
+
245
+ - `eval_strategy`: steps
246
+ - `per_device_train_batch_size`: 64
247
+ - `per_device_eval_batch_size`: 64
248
+ - `num_train_epochs`: 12
249
+ - `warmup_ratio`: 0.1
250
+ - `fp16`: True
251
+ - `dataloader_num_workers`: 4
252
+ - `load_best_model_at_end`: True
253
+ - `label_smoothing_factor`: 0.01
254
+ - `eval_on_start`: True
255
+
256
+ #### All Hyperparameters
257
+ <details><summary>Click to expand</summary>
258
+
259
+ - `overwrite_output_dir`: False
260
+ - `do_predict`: False
261
+ - `eval_strategy`: steps
262
+ - `prediction_loss_only`: True
263
+ - `per_device_train_batch_size`: 64
264
+ - `per_device_eval_batch_size`: 64
265
+ - `per_gpu_train_batch_size`: None
266
+ - `per_gpu_eval_batch_size`: None
267
+ - `gradient_accumulation_steps`: 1
268
+ - `eval_accumulation_steps`: None
269
+ - `torch_empty_cache_steps`: None
270
+ - `learning_rate`: 5e-05
271
+ - `weight_decay`: 0.0
272
+ - `adam_beta1`: 0.9
273
+ - `adam_beta2`: 0.999
274
+ - `adam_epsilon`: 1e-08
275
+ - `max_grad_norm`: 1.0
276
+ - `num_train_epochs`: 12
277
+ - `max_steps`: -1
278
+ - `lr_scheduler_type`: linear
279
+ - `lr_scheduler_kwargs`: {}
280
+ - `warmup_ratio`: 0.1
281
+ - `warmup_steps`: 0
282
+ - `log_level`: passive
283
+ - `log_level_replica`: warning
284
+ - `log_on_each_node`: True
285
+ - `logging_nan_inf_filter`: True
286
+ - `save_safetensors`: True
287
+ - `save_on_each_node`: False
288
+ - `save_only_model`: False
289
+ - `restore_callback_states_from_checkpoint`: False
290
+ - `no_cuda`: False
291
+ - `use_cpu`: False
292
+ - `use_mps_device`: False
293
+ - `seed`: 42
294
+ - `data_seed`: None
295
+ - `jit_mode_eval`: False
296
+ - `use_ipex`: False
297
+ - `bf16`: False
298
+ - `fp16`: True
299
+ - `fp16_opt_level`: O1
300
+ - `half_precision_backend`: auto
301
+ - `bf16_full_eval`: False
302
+ - `fp16_full_eval`: False
303
+ - `tf32`: None
304
+ - `local_rank`: 0
305
+ - `ddp_backend`: None
306
+ - `tpu_num_cores`: None
307
+ - `tpu_metrics_debug`: False
308
+ - `debug`: []
309
+ - `dataloader_drop_last`: False
310
+ - `dataloader_num_workers`: 4
311
+ - `dataloader_prefetch_factor`: None
312
+ - `past_index`: -1
313
+ - `disable_tqdm`: False
314
+ - `remove_unused_columns`: True
315
+ - `label_names`: None
316
+ - `load_best_model_at_end`: True
317
+ - `ignore_data_skip`: False
318
+ - `fsdp`: []
319
+ - `fsdp_min_num_params`: 0
320
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
321
+ - `fsdp_transformer_layer_cls_to_wrap`: None
322
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
323
+ - `deepspeed`: None
324
+ - `label_smoothing_factor`: 0.01
325
+ - `optim`: adamw_torch
326
+ - `optim_args`: None
327
+ - `adafactor`: False
328
+ - `group_by_length`: False
329
+ - `length_column_name`: length
330
+ - `ddp_find_unused_parameters`: None
331
+ - `ddp_bucket_cap_mb`: None
332
+ - `ddp_broadcast_buffers`: False
333
+ - `dataloader_pin_memory`: True
334
+ - `dataloader_persistent_workers`: False
335
+ - `skip_memory_metrics`: True
336
+ - `use_legacy_prediction_loop`: False
337
+ - `push_to_hub`: False
338
+ - `resume_from_checkpoint`: None
339
+ - `hub_model_id`: None
340
+ - `hub_strategy`: every_save
341
+ - `hub_private_repo`: None
342
+ - `hub_always_push`: False
343
+ - `gradient_checkpointing`: False
344
+ - `gradient_checkpointing_kwargs`: None
345
+ - `include_inputs_for_metrics`: False
346
+ - `include_for_metrics`: []
347
+ - `eval_do_concat_batches`: True
348
+ - `fp16_backend`: auto
349
+ - `push_to_hub_model_id`: None
350
+ - `push_to_hub_organization`: None
351
+ - `mp_parameters`:
352
+ - `auto_find_batch_size`: False
353
+ - `full_determinism`: False
354
+ - `torchdynamo`: None
355
+ - `ray_scope`: last
356
+ - `ddp_timeout`: 1800
357
+ - `torch_compile`: False
358
+ - `torch_compile_backend`: None
359
+ - `torch_compile_mode`: None
360
+ - `dispatch_batches`: None
361
+ - `split_batches`: None
362
+ - `include_tokens_per_second`: False
363
+ - `include_num_input_tokens_seen`: False
364
+ - `neftune_noise_alpha`: None
365
+ - `optim_target_modules`: None
366
+ - `batch_eval_metrics`: False
367
+ - `eval_on_start`: True
368
+ - `use_liger_kernel`: False
369
+ - `eval_use_gather_object`: False
370
+ - `average_tokens_across_devices`: False
371
+ - `prompts`: None
372
+ - `batch_sampler`: batch_sampler
373
+ - `multi_dataset_batch_sampler`: proportional
374
+
375
+ </details>
376
+
377
+ ### Training Logs
378
+ | Epoch | Step | Training Loss | Validation Loss | allstats-semantic-mpnet-eval_spearman_cosine | allstats-semantic-mpnet-test_spearman_cosine |
379
+ |:----------:|:---------:|:-------------:|:---------------:|:--------------------------------------------:|:--------------------------------------------:|
380
+ | 0 | 0 | - | 0.0958 | 0.6404 | - |
381
+ | 0.2008 | 250 | 0.0464 | 0.0246 | 0.7693 | - |
382
+ | 0.4016 | 500 | 0.0218 | 0.0179 | 0.7720 | - |
383
+ | 0.6024 | 750 | 0.0172 | 0.0153 | 0.7790 | - |
384
+ | 0.8032 | 1000 | 0.0156 | 0.0136 | 0.7809 | - |
385
+ | 1.0040 | 1250 | 0.0137 | 0.0139 | 0.7769 | - |
386
+ | 1.2048 | 1500 | 0.0112 | 0.0120 | 0.7825 | - |
387
+ | 1.4056 | 1750 | 0.0104 | 0.0112 | 0.7869 | - |
388
+ | 1.6064 | 2000 | 0.01 | 0.0103 | 0.7893 | - |
389
+ | 1.8072 | 2250 | 0.009 | 0.0097 | 0.7944 | - |
390
+ | 2.0080 | 2500 | 0.0088 | 0.0097 | 0.7947 | - |
391
+ | 2.2088 | 2750 | 0.0064 | 0.0086 | 0.7971 | - |
392
+ | 2.4096 | 3000 | 0.006 | 0.0085 | 0.7991 | - |
393
+ | 2.6104 | 3250 | 0.006 | 0.0084 | 0.7995 | - |
394
+ | 2.8112 | 3500 | 0.006 | 0.0081 | 0.8047 | - |
395
+ | 3.0120 | 3750 | 0.0058 | 0.0082 | 0.8055 | - |
396
+ | 3.2129 | 4000 | 0.0041 | 0.0077 | 0.8096 | - |
397
+ | 3.4137 | 4250 | 0.0042 | 0.0078 | 0.8092 | - |
398
+ | 3.6145 | 4500 | 0.004 | 0.0074 | 0.8107 | - |
399
+ | 3.8153 | 4750 | 0.0043 | 0.0073 | 0.8132 | - |
400
+ | 4.0161 | 5000 | 0.0044 | 0.0076 | 0.8090 | - |
401
+ | 4.2169 | 5250 | 0.0032 | 0.0071 | 0.8173 | - |
402
+ | 4.4177 | 5500 | 0.0031 | 0.0068 | 0.8218 | - |
403
+ | 4.6185 | 5750 | 0.0031 | 0.0067 | 0.8200 | - |
404
+ | 4.8193 | 6000 | 0.0032 | 0.0065 | 0.8233 | - |
405
+ | 5.0201 | 6250 | 0.0029 | 0.0067 | 0.8227 | - |
406
+ | 5.2209 | 6500 | 0.0024 | 0.0064 | 0.8249 | - |
407
+ | 5.4217 | 6750 | 0.0023 | 0.0066 | 0.8298 | - |
408
+ | 5.6225 | 7000 | 0.0025 | 0.0063 | 0.8271 | - |
409
+ | 5.8233 | 7250 | 0.0024 | 0.0064 | 0.8299 | - |
410
+ | 6.0241 | 7500 | 0.0023 | 0.0064 | 0.8312 | - |
411
+ | 6.2249 | 7750 | 0.0017 | 0.0061 | 0.8319 | - |
412
+ | 6.4257 | 8000 | 0.0017 | 0.0059 | 0.8330 | - |
413
+ | 6.6265 | 8250 | 0.0019 | 0.0064 | 0.8309 | - |
414
+ | 6.8273 | 8500 | 0.002 | 0.0061 | 0.8332 | - |
415
+ | 7.0281 | 8750 | 0.0018 | 0.0061 | 0.8360 | - |
416
+ | 7.2289 | 9000 | 0.0014 | 0.0060 | 0.8387 | - |
417
+ | 7.4297 | 9250 | 0.0014 | 0.0059 | 0.8396 | - |
418
+ | 7.6305 | 9500 | 0.0014 | 0.0059 | 0.8402 | - |
419
+ | 7.8313 | 9750 | 0.0014 | 0.0059 | 0.8388 | - |
420
+ | 8.0321 | 10000 | 0.0014 | 0.0058 | 0.8411 | - |
421
+ | 8.2329 | 10250 | 0.0011 | 0.0059 | 0.8420 | - |
422
+ | 8.4337 | 10500 | 0.0011 | 0.0057 | 0.8431 | - |
423
+ | 8.6345 | 10750 | 0.0011 | 0.0057 | 0.8418 | - |
424
+ | 8.8353 | 11000 | 0.0011 | 0.0057 | 0.8440 | - |
425
+ | 9.0361 | 11250 | 0.0011 | 0.0057 | 0.8449 | - |
426
+ | 9.2369 | 11500 | 0.0008 | 0.0056 | 0.8451 | - |
427
+ | 9.4378 | 11750 | 0.0009 | 0.0057 | 0.8456 | - |
428
+ | 9.6386 | 12000 | 0.0009 | 0.0056 | 0.8469 | - |
429
+ | 9.8394 | 12250 | 0.0009 | 0.0056 | 0.8470 | - |
430
+ | 10.0402 | 12500 | 0.0009 | 0.0056 | 0.8475 | - |
431
+ | 10.2410 | 12750 | 0.0007 | 0.0056 | 0.8489 | - |
432
+ | 10.4418 | 13000 | 0.0007 | 0.0056 | 0.8495 | - |
433
+ | 10.6426 | 13250 | 0.0007 | 0.0056 | 0.8501 | - |
434
+ | 10.8434 | 13500 | 0.0007 | 0.0056 | 0.8497 | - |
435
+ | 11.0442 | 13750 | 0.0006 | 0.0056 | 0.8500 | - |
436
+ | **11.245** | **14000** | **0.0006** | **0.0055** | **0.8506** | **-** |
437
+ | 11.4458 | 14250 | 0.0006 | 0.0055 | 0.8507 | - |
438
+ | 11.6466 | 14500 | 0.0006 | 0.0055 | 0.8512 | - |
439
+ | 11.8474 | 14750 | 0.0006 | 0.0055 | 0.8515 | - |
440
+ | 12.0 | 14940 | - | - | - | 0.8521 |
441
+
442
+ * The bold row denotes the saved checkpoint.
443
+
444
+ ### Framework Versions
445
+ - Python: 3.10.12
446
+ - Sentence Transformers: 3.3.1
447
+ - Transformers: 4.47.0
448
+ - PyTorch: 2.5.1+cu121
449
+ - Accelerate: 1.2.1
450
+ - Datasets: 3.2.0
451
+ - Tokenizers: 0.21.0
452
+
453
+ ## Citation
454
+
455
+ ### BibTeX
456
+
457
+ #### Sentence Transformers
458
+ ```bibtex
459
+ @inproceedings{reimers-2019-sentence-bert,
460
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
461
+ author = "Reimers, Nils and Gurevych, Iryna",
462
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
463
+ month = "11",
464
+ year = "2019",
465
+ publisher = "Association for Computational Linguistics",
466
+ url = "https://arxiv.org/abs/1908.10084",
467
+ }
468
+ ```
469
+
470
+ <!--
471
+ ## Glossary
472
+
473
+ *Clearly define terms in order to be accessible across audiences.*
474
+ -->
475
+
476
+ <!--
477
+ ## Model Card Authors
478
+
479
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
480
+ -->
481
+
482
+ <!--
483
+ ## Model Card Contact
484
+
485
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
486
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "xlm-roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "output_past": true,
22
+ "pad_token_id": 1,
23
+ "position_embedding_type": "absolute",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.47.0",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 250002
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.0",
5
+ "pytorch": "2.5.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:164a2b90df48d12e8d3141a3c750decd9d9af71a7de1eed3ff39ed2137089118
3
+ size 1112197096
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad551d5600a84242d0973327029452a1e3672ba6313c2a3c3d69c4310e12719
3
+ size 17082987
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "extra_special_tokens": {},
49
+ "mask_token": "<mask>",
50
+ "max_length": 128,
51
+ "model_max_length": 128,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "<pad>",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "</s>",
57
+ "stride": 0,
58
+ "tokenizer_class": "XLMRobertaTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "<unk>"
62
+ }