File size: 4,744 Bytes
54c85bc
 
 
 
 
7b7fa53
54c85bc
 
 
7b7fa53
 
 
 
 
54c85bc
 
 
 
 
 
 
 
 
 
7b7fa53
54c85bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
---
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
- alignment-handbook
- trl
- simpo
- generated_from_trainer
- trl
- simpo
- generated_from_trainer
datasets:
- yakazimir/ultrafeedback_binarized
model-index:
- name: qwen_l21_entropy
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# qwen_l21_entropy

This model is a fine-tuned version of [trl-lib/qwen1.5-0.5b-sft](https://huggingface.co/trl-lib/qwen1.5-0.5b-sft) on the yakazimir/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6612
- Rewards/chosen: -4.9613
- Rewards/rejected: -8.3580
- Rewards/accuracies: 0.6766
- Rewards/margins: 3.3967
- Logps/rejected: -8.3580
- Logps/chosen: -4.9613
- Logits/rejected: 1.3373
- Logits/chosen: 0.9296

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6893        | 0.2141 | 400  | 0.6976          | -5.6399        | -5.6514          | 0.5134             | 0.0115          | -5.6514        | -5.6399      | 0.6073          | 0.4970        |
| 0.6905        | 0.4282 | 800  | 0.6888          | -9.5942        | -10.2217         | 0.5772             | 0.6275          | -10.2217       | -9.5942      | 0.9367          | 0.7851        |
| 0.6827        | 0.6422 | 1200 | 0.6809          | -3.7037        | -4.6831          | 0.6417             | 0.9794          | -4.6831        | -3.7037      | 0.4628          | 0.3100        |
| 0.665         | 0.8563 | 1600 | 0.6737          | -4.1597        | -6.3017          | 0.6588             | 2.1420          | -6.3017        | -4.1597      | 0.9087          | 0.6452        |
| 0.674         | 1.0704 | 2000 | 0.6702          | -4.7093        | -7.4594          | 0.6677             | 2.7501          | -7.4594        | -4.7093      | 1.0243          | 0.7072        |
| 0.6648        | 1.2845 | 2400 | 0.6651          | -4.2327        | -7.0267          | 0.6654             | 2.7940          | -7.0267        | -4.2327      | 0.9760          | 0.6519        |
| 0.6665        | 1.4986 | 2800 | 0.6654          | -4.6367        | -7.6607          | 0.6706             | 3.0240          | -7.6607        | -4.6367      | 1.0821          | 0.7239        |
| 0.6746        | 1.7127 | 3200 | 0.6641          | -5.1015        | -8.2207          | 0.6803             | 3.1192          | -8.2207        | -5.1015      | 1.0711          | 0.6993        |
| 0.6634        | 1.9267 | 3600 | 0.6629          | -4.7411        | -7.8576          | 0.6855             | 3.1165          | -7.8576        | -4.7411      | 1.0738          | 0.7086        |
| 0.6224        | 2.1408 | 4000 | 0.6607          | -4.6523        | -7.8867          | 0.6818             | 3.2344          | -7.8867        | -4.6523      | 1.1108          | 0.7335        |
| 0.6604        | 2.3549 | 4400 | 0.6618          | -4.7746        | -8.0447          | 0.6780             | 3.2700          | -8.0447        | -4.7746      | 1.2654          | 0.8695        |
| 0.6512        | 2.5690 | 4800 | 0.6615          | -4.9147        | -8.2777          | 0.6773             | 3.3630          | -8.2777        | -4.9147      | 1.2819          | 0.8805        |
| 0.6594        | 2.7831 | 5200 | 0.6611          | -4.9802        | -8.3859          | 0.6795             | 3.4057          | -8.3859        | -4.9802      | 1.2711          | 0.8676        |
| 0.6402        | 2.9972 | 5600 | 0.6612          | -4.9613        | -8.3580          | 0.6766             | 3.3967          | -8.3580        | -4.9613      | 1.3373          | 0.9296        |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1