File size: 2,055 Bytes
d8e7498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
base_model: google/vivit-b-16x2-kinetics400
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vivit-b-16x2-kinetics400-finetuned-vivit-frequency
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vivit-b-16x2-kinetics400-finetuned-vivit-frequency

This model is a fine-tuned version of [google/vivit-b-16x2-kinetics400](https://huggingface.co/google/vivit-b-16x2-kinetics400) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2570
- Accuracy: 0.7455

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 5920

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5871        | 0.1   | 592  | 1.1419          | 0.7706   |
| 0.5309        | 1.1   | 1184 | 1.1548          | 0.7634   |
| 0.8992        | 2.1   | 1776 | 1.1477          | 0.7742   |
| 0.5519        | 3.1   | 2368 | 1.0269          | 0.7957   |
| 1.366         | 4.1   | 2960 | 1.3621          | 0.7885   |
| 2.3144        | 5.1   | 3552 | 0.8907          | 0.7634   |
| 1.6161        | 6.1   | 4144 | 1.0485          | 0.7384   |
| 0.0673        | 7.1   | 4736 | 1.2847          | 0.7276   |
| 0.0042        | 8.1   | 5328 | 1.2755          | 0.7455   |
| 0.0017        | 9.1   | 5920 | 1.2570          | 0.7455   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.0.1+cu117
- Datasets 2.20.0
- Tokenizers 0.19.1