Update README.md
Browse files
README.md
CHANGED
@@ -1,15 +1,158 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
datasets:
|
4 |
-
- mozilla-foundation/common_voice_13_0
|
5 |
- mozilla-foundation/common_voice_17_0
|
|
|
6 |
language:
|
7 |
- hi
|
8 |
metrics:
|
9 |
- wer
|
10 |
base_model:
|
11 |
- theainerd/Wav2Vec2-large-xlsr-hindi
|
12 |
-
new_version: yash072/wav2vec2-large-xlsr-YashHindi-4
|
13 |
pipeline_tag: automatic-speech-recognition
|
14 |
library_name: transformers
|
15 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
datasets:
|
|
|
4 |
- mozilla-foundation/common_voice_17_0
|
5 |
+
- mozilla-foundation/common_voice_13_0
|
6 |
language:
|
7 |
- hi
|
8 |
metrics:
|
9 |
- wer
|
10 |
base_model:
|
11 |
- theainerd/Wav2Vec2-large-xlsr-hindi
|
|
|
12 |
pipeline_tag: automatic-speech-recognition
|
13 |
library_name: transformers
|
14 |
+
---
|
15 |
+
# Model's Improvment
|
16 |
+
|
17 |
+
This model card highlights the improvements from the base model, specifically a reduction in WER from 72% to 54%. This improvement reflects the efficacy of the fine-tuning process on Hindi speech data.
|
18 |
+
|
19 |
+
# Wav2Vec2-Large-XLSR-Hindi-Finetuned - Yash_Ratnaker
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [theainerd/Wav2Vec2-large-xlsr-hindi](https://huggingface.co/theainerd/Wav2Vec2-large-xlsr-hindi) on the Common Voice 13 and 17 datasets. It is specifically optimized for Hindi speech recognition, with a notable improvement in transcription accuracy, achieving a **Word Error Rate (WER) of 54%**, compared to the base model’s WER of 72% on the same dataset.
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
This Wav2Vec2 model, originally developed by Facebook AI, utilizes self-supervised learning on large unlabeled speech datasets and is then fine-tuned on labeled data. This approach enables the model to learn intricate linguistic features and transcribe speech in Hindi with high accuracy. Fine-tuning on Common Voice Hindi data allows the model to better capture the language's nuances, improving transcription quality.
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
This model is ideal for automatic speech recognition (ASR) applications in Hindi, such as media transcription, accessibility services, and educational content transcription, where audio quality is controlled.
|
30 |
+
|
31 |
+
|
32 |
+
## Usage
|
33 |
+
|
34 |
+
The model can be used directly (without a language model) as follows:
|
35 |
+
|
36 |
+
```python
|
37 |
+
import torch
|
38 |
+
import torchaudio
|
39 |
+
from datasets import load_dataset
|
40 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
41 |
+
|
42 |
+
# Load the Hindi Common Voice dataset
|
43 |
+
test_dataset = load_dataset("common_voice", "hi", split="test[:2%]")
|
44 |
+
|
45 |
+
# Load the processor and model
|
46 |
+
processor = Wav2Vec2Processor.from_pretrained("yash072/wav2vec2-large-xlsr-YashHindi-4")
|
47 |
+
model = Wav2Vec2ForCTC.from_pretrained("yash072/wav2vec2-large-xlsr-YashHindi-4")
|
48 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
49 |
+
|
50 |
+
# Function to process the dataset
|
51 |
+
def speech_file_to_array_fn(batch):
|
52 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
53 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
54 |
+
return batch
|
55 |
+
|
56 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
57 |
+
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
58 |
+
|
59 |
+
# Perform inference
|
60 |
+
with torch.no_grad():
|
61 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
62 |
+
|
63 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
64 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
65 |
+
print("Reference:", test_dataset["sentence"][:2])
|
66 |
+
|
67 |
+
# Evaluation
|
68 |
+
The model can be evaluated as follows on the Hindi test data of Common Voice.
|
69 |
+
|
70 |
+
```python
|
71 |
+
import torch
|
72 |
+
import torchaudio
|
73 |
+
from datasets import load_dataset, load_metric
|
74 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
75 |
+
import re
|
76 |
+
|
77 |
+
# Load the dataset and metrics
|
78 |
+
test_dataset = load_dataset("common_voice", "hi", split="test")
|
79 |
+
wer = load_metric("wer")
|
80 |
+
|
81 |
+
# Initialize processor and model
|
82 |
+
processor = Wav2Vec2Processor.from_pretrained("yash072/wav2vec2-large-xlsr-YashHindi-4")
|
83 |
+
model = Wav2Vec2ForCTC.from_pretrained("yash072/wav2vec2-large-xlsr-YashHindi-4")
|
84 |
+
model.to("cuda")
|
85 |
+
|
86 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
87 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
|
88 |
+
|
89 |
+
# Function to preprocess the data
|
90 |
+
def speech_file_to_array_fn(batch):
|
91 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
92 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
93 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
94 |
+
return batch
|
95 |
+
|
96 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
97 |
+
|
98 |
+
# Evaluation function
|
99 |
+
def evaluate(batch):
|
100 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
101 |
+
with torch.no_grad():
|
102 |
+
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
103 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
104 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
105 |
+
return batch
|
106 |
+
|
107 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
108 |
+
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
109 |
+
|
110 |
+
|
111 |
+
|
112 |
+
### Limitations:
|
113 |
+
- The model may face challenges with dialectal or regional variations within Hindi.
|
114 |
+
- Performance can degrade with noisy audio or overlapping speech.
|
115 |
+
- It is not intended for real-time transcription due to latency considerations.
|
116 |
+
|
117 |
+
## Training and evaluation data
|
118 |
+
|
119 |
+
The model was fine-tuned on the Hindi portions of the Common Voice 13 and 17 datasets, which contain speech samples from native Hindi speakers. This data captures a range of accents, pronunciations, and recording conditions, enhancing the model’s ability to generalize across different speech patterns. Evaluation was performed on a carefully curated subset, ensuring a reliable benchmark for ASR performance in Hindi.
|
120 |
+
|
121 |
+
## Training procedure
|
122 |
+
|
123 |
+
### Hyperparameters and setup:
|
124 |
+
|
125 |
+
The following hyperparameters were used during training:
|
126 |
+
- **Learning rate**: 1e-4
|
127 |
+
- **Batch size**: 16 (per device)
|
128 |
+
- **Gradient accumulation steps**: 2
|
129 |
+
- **Evaluation strategy**: steps
|
130 |
+
- **Max steps**: 2500
|
131 |
+
- **Mixed precision**: FP16
|
132 |
+
- **Save steps**: 500
|
133 |
+
- **Evaluation steps**: 500
|
134 |
+
- **Logging steps**: 500
|
135 |
+
- **Warmup steps**: 500
|
136 |
+
- **Save total limit**: 1
|
137 |
+
|
138 |
+
### Training output
|
139 |
+
|
140 |
+
- **Global step**: 2500
|
141 |
+
- **Training runtime**: Approximately 1 hour 21 minutes
|
142 |
+
- **Epochs**: 5-6
|
143 |
+
|
144 |
+
### Training results
|
145 |
+
|
146 |
+
| Step | Training Loss | Validation Loss | WER |
|
147 |
+
|------|---------------|-----------------|--------|
|
148 |
+
| 500 | 5.603000 | 0.987691 | 0.7556 |
|
149 |
+
| 1000 | 0.720300 | 0.667561 | 0.6196 |
|
150 |
+
| 1500 | 0.507000 | 0.592814 | 0.5844 |
|
151 |
+
| 2000 | 0.431100 | 0.549786 | 0.5439 |
|
152 |
+
| 2500 | 0.395600 | 0.537703 | 0.5428 |
|
153 |
+
|
154 |
+
### Framework versions
|
155 |
+
Transformers: 4.42.4
|
156 |
+
PyTorch: 2.3.1+cu121
|
157 |
+
Datasets: 2.20.0
|
158 |
+
Tokenizers: 0.19.1
|