yasirdemircan commited on
Commit
d3af2e9
·
verified ·
1 Parent(s): a359158

Add SetFit model

Browse files
Files changed (3) hide show
  1. README.md +23 -20
  2. model.safetensors +1 -1
  3. model_head.pkl +1 -1
README.md CHANGED
@@ -10,14 +10,17 @@ tags:
10
  - text-classification
11
  - generated_from_setfit_trainer
12
  widget:
13
- - text: X9.31 PRNG seed keys Triple-DES (112 bit) Generated by gathering entropy.
14
- - text: PRNG seed key Pre-loaded during the manufacturing process, compiled in the
15
- binary.
16
  - text: ANSI X9.31 PRNG key Triple DES key Generated internally by non-approved RNG
17
  Volatile memory only (plaintext) Zeroized when the module reboots.
18
- - text: All CSPs are injected during manufacture.
19
- - text: The internal DRBG state value of the RNG is stored in NVRAM for persistent
20
- use.
 
 
 
 
21
  inference: true
22
  ---
23
 
@@ -49,10 +52,10 @@ The model has been trained using an efficient few-shot learning technique that i
49
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
50
 
51
  ### Model Labels
52
- | Label | Examples |
53
- |:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
54
- | negative | <ul><li>'PRNG ANSI X9.31 Key K1, K2 Internal 3DES Key Automatically Generated per seeding This is an internal key used for ANSI X9.31 192 bits Internal Key generate from the seed and seed key'</li><li>'ANSI X9.31 PRNG key AES-128 Generated internally by the Kernel.'</li><li>'The seed key is used as an input to the X9.31 RNG, a deterministic random number generator, and is generally not stored long term.'</li></ul> |
55
- | positive | <ul><li>'The ANSI X9.31 RNG is seeded using a 128-bit AES seed key generated external to the module.'</li><li>'An AES-256 seed key generated during manufacturing is used to initialize the RNG in the encryption algorithm.'</li><li>'PRNG seed key is static during the lifetime of the module.'</li></ul> |
56
 
57
  ## Uses
58
 
@@ -72,7 +75,7 @@ from setfit import SetFitModel
72
  # Download from the 🤗 Hub
73
  model = SetFitModel.from_pretrained("yasirdemircan/setfit_rng_v5")
74
  # Run inference
75
- preds = model("All CSPs are injected during manufacture.")
76
  ```
77
 
78
  <!--
@@ -104,12 +107,12 @@ preds = model("All CSPs are injected during manufacture.")
104
  ### Training Set Metrics
105
  | Training set | Min | Median | Max |
106
  |:-------------|:----|:--------|:----|
107
- | Word count | 6 | 20.8222 | 59 |
108
 
109
  | Label | Training Sample Count |
110
  |:---------|:----------------------|
111
- | negative | 21 |
112
- | positive | 24 |
113
 
114
  ### Training Hyperparameters
115
  - batch_size: (16, 16)
@@ -132,13 +135,13 @@ preds = model("All CSPs are injected during manufacture.")
132
  ### Training Results
133
  | Epoch | Step | Training Loss | Validation Loss |
134
  |:------:|:----:|:-------------:|:---------------:|
135
- | 0.0294 | 1 | 0.2472 | - |
136
- | 1.0 | 34 | - | 0.2296 |
137
- | 1.4706 | 50 | 0.0969 | - |
138
- | 2.0 | 68 | - | 0.3144 |
139
  | 2.9412 | 100 | 0.0006 | - |
140
- | 3.0 | 102 | - | 0.3090 |
141
- | 4.0 | 136 | - | 0.3083 |
142
 
143
  ### Framework Versions
144
  - Python: 3.10.15
 
10
  - text-classification
11
  - generated_from_setfit_trainer
12
  widget:
13
+ - text: Approved PRNG initial seeds and seed keys used for initialization are securely
14
+ stored in flash memory.
 
15
  - text: ANSI X9.31 PRNG key Triple DES key Generated internally by non-approved RNG
16
  Volatile memory only (plaintext) Zeroized when the module reboots.
17
+ - text: PRNG ANSI X9.31 Key K1, K2 Internal 3DES Key Automatically Generated per seeding
18
+ This is an internal key used for ANSI X9.31 192 bits Internal Key generate from
19
+ the seed and seed key
20
+ - text: PRNG Seed Key A new ANSI X9.31 RNG Seed Key is generated from a block of 160
21
+ bits output by the random noise source software library.
22
+ - text: FIPS-Approved random number generation ANSI X9.31 PRNG Key AES 128-bit key
23
+ Hard-coded in the module.
24
  inference: true
25
  ---
26
 
 
52
  - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
53
 
54
  ### Model Labels
55
+ | Label | Examples |
56
+ |:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
57
+ | negative | <ul><li>'X Seed Key for RNG: Seed created by NDRNG and used as the Triple DES key in the ANSI X9.31 RNG.'</li><li>'The ANSI X9.31 Seed key is held in volatile system memory and destroyed on power cycle.'</li><li>'ANSI X9.31 PRNG key AES-128 Generated internally by the Kernel.'</li></ul> |
58
+ | positive | <ul><li>'The private key component of an ANSI X9.31-compliant PRNG is stored securely in NVRAM.'</li><li>'Secure storage of the RNG seed key in tamper-resistant hardware ensures reliable random number generation.'</li><li>'A FIPS-approved RNG utilizes an ANSI X9.31 PRNG key with an AES 128-bit key that is hard-coded into the module.'</li></ul> |
59
 
60
  ## Uses
61
 
 
75
  # Download from the 🤗 Hub
76
  model = SetFitModel.from_pretrained("yasirdemircan/setfit_rng_v5")
77
  # Run inference
78
+ preds = model("FIPS-Approved random number generation ANSI X9.31 PRNG Key AES 128-bit key Hard-coded in the module.")
79
  ```
80
 
81
  <!--
 
107
  ### Training Set Metrics
108
  | Training set | Min | Median | Max |
109
  |:-------------|:----|:--------|:----|
110
+ | Word count | 6 | 19.1778 | 53 |
111
 
112
  | Label | Training Sample Count |
113
  |:---------|:----------------------|
114
+ | negative | 22 |
115
+ | positive | 23 |
116
 
117
  ### Training Hyperparameters
118
  - batch_size: (16, 16)
 
135
  ### Training Results
136
  | Epoch | Step | Training Loss | Validation Loss |
137
  |:------:|:----:|:-------------:|:---------------:|
138
+ | 0.0294 | 1 | 0.2337 | - |
139
+ | 1.0 | 34 | - | 0.1687 |
140
+ | 1.4706 | 50 | 0.1015 | - |
141
+ | 2.0 | 68 | - | 0.1004 |
142
  | 2.9412 | 100 | 0.0006 | - |
143
+ | 3.0 | 102 | - | 0.1020 |
144
+ | 4.0 | 136 | - | 0.1021 |
145
 
146
  ### Framework Versions
147
  - Python: 3.10.15
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aba1a3febe1d337cb9daa6b774111b0bdfb5c64ff158bee9a9a1d05cd2cdf5ed
3
  size 437967672
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20188c8a8e6449a67f433e5291757c320ce4f7f783a7e85ebb6906c4b75a00e7
3
  size 437967672
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:63c7aa63a7a0904f0ca3803bd3508b835b6af58f19c5937cf14934400f78b83d
3
  size 7055
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:faad5660c72ed5eafb75c45dc67f3478f451053598a3bc652fa8234216652eb7
3
  size 7055