yasirdemircan
commited on
Add SetFit model
Browse files- README.md +23 -20
- model.safetensors +1 -1
- model_head.pkl +1 -1
README.md
CHANGED
@@ -10,14 +10,17 @@ tags:
|
|
10 |
- text-classification
|
11 |
- generated_from_setfit_trainer
|
12 |
widget:
|
13 |
-
- text:
|
14 |
-
|
15 |
-
binary.
|
16 |
- text: ANSI X9.31 PRNG key Triple DES key Generated internally by non-approved RNG
|
17 |
Volatile memory only (plaintext) Zeroized when the module reboots.
|
18 |
-
- text:
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
inference: true
|
22 |
---
|
23 |
|
@@ -49,10 +52,10 @@ The model has been trained using an efficient few-shot learning technique that i
|
|
49 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
50 |
|
51 |
### Model Labels
|
52 |
-
| Label | Examples
|
53 |
-
|
54 |
-
| negative | <ul><li>'
|
55 |
-
| positive | <ul><li>'The
|
56 |
|
57 |
## Uses
|
58 |
|
@@ -72,7 +75,7 @@ from setfit import SetFitModel
|
|
72 |
# Download from the 🤗 Hub
|
73 |
model = SetFitModel.from_pretrained("yasirdemircan/setfit_rng_v5")
|
74 |
# Run inference
|
75 |
-
preds = model("
|
76 |
```
|
77 |
|
78 |
<!--
|
@@ -104,12 +107,12 @@ preds = model("All CSPs are injected during manufacture.")
|
|
104 |
### Training Set Metrics
|
105 |
| Training set | Min | Median | Max |
|
106 |
|:-------------|:----|:--------|:----|
|
107 |
-
| Word count | 6 |
|
108 |
|
109 |
| Label | Training Sample Count |
|
110 |
|:---------|:----------------------|
|
111 |
-
| negative |
|
112 |
-
| positive |
|
113 |
|
114 |
### Training Hyperparameters
|
115 |
- batch_size: (16, 16)
|
@@ -132,13 +135,13 @@ preds = model("All CSPs are injected during manufacture.")
|
|
132 |
### Training Results
|
133 |
| Epoch | Step | Training Loss | Validation Loss |
|
134 |
|:------:|:----:|:-------------:|:---------------:|
|
135 |
-
| 0.0294 | 1 | 0.
|
136 |
-
| 1.0 | 34 | - | 0.
|
137 |
-
| 1.4706 | 50 | 0.
|
138 |
-
| 2.0 | 68 | - | 0.
|
139 |
| 2.9412 | 100 | 0.0006 | - |
|
140 |
-
| 3.0 | 102 | - | 0.
|
141 |
-
| 4.0 | 136 | - | 0.
|
142 |
|
143 |
### Framework Versions
|
144 |
- Python: 3.10.15
|
|
|
10 |
- text-classification
|
11 |
- generated_from_setfit_trainer
|
12 |
widget:
|
13 |
+
- text: Approved PRNG initial seeds and seed keys used for initialization are securely
|
14 |
+
stored in flash memory.
|
|
|
15 |
- text: ANSI X9.31 PRNG key Triple DES key Generated internally by non-approved RNG
|
16 |
Volatile memory only (plaintext) Zeroized when the module reboots.
|
17 |
+
- text: PRNG ANSI X9.31 Key K1, K2 Internal 3DES Key Automatically Generated per seeding
|
18 |
+
This is an internal key used for ANSI X9.31 192 bits Internal Key generate from
|
19 |
+
the seed and seed key
|
20 |
+
- text: PRNG Seed Key A new ANSI X9.31 RNG Seed Key is generated from a block of 160
|
21 |
+
bits output by the random noise source software library.
|
22 |
+
- text: FIPS-Approved random number generation ANSI X9.31 PRNG Key AES 128-bit key
|
23 |
+
Hard-coded in the module.
|
24 |
inference: true
|
25 |
---
|
26 |
|
|
|
52 |
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
53 |
|
54 |
### Model Labels
|
55 |
+
| Label | Examples |
|
56 |
+
|:---------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
57 |
+
| negative | <ul><li>'X Seed Key for RNG: Seed created by NDRNG and used as the Triple DES key in the ANSI X9.31 RNG.'</li><li>'The ANSI X9.31 Seed key is held in volatile system memory and destroyed on power cycle.'</li><li>'ANSI X9.31 PRNG key AES-128 Generated internally by the Kernel.'</li></ul> |
|
58 |
+
| positive | <ul><li>'The private key component of an ANSI X9.31-compliant PRNG is stored securely in NVRAM.'</li><li>'Secure storage of the RNG seed key in tamper-resistant hardware ensures reliable random number generation.'</li><li>'A FIPS-approved RNG utilizes an ANSI X9.31 PRNG key with an AES 128-bit key that is hard-coded into the module.'</li></ul> |
|
59 |
|
60 |
## Uses
|
61 |
|
|
|
75 |
# Download from the 🤗 Hub
|
76 |
model = SetFitModel.from_pretrained("yasirdemircan/setfit_rng_v5")
|
77 |
# Run inference
|
78 |
+
preds = model("FIPS-Approved random number generation ANSI X9.31 PRNG Key AES 128-bit key Hard-coded in the module.")
|
79 |
```
|
80 |
|
81 |
<!--
|
|
|
107 |
### Training Set Metrics
|
108 |
| Training set | Min | Median | Max |
|
109 |
|:-------------|:----|:--------|:----|
|
110 |
+
| Word count | 6 | 19.1778 | 53 |
|
111 |
|
112 |
| Label | Training Sample Count |
|
113 |
|:---------|:----------------------|
|
114 |
+
| negative | 22 |
|
115 |
+
| positive | 23 |
|
116 |
|
117 |
### Training Hyperparameters
|
118 |
- batch_size: (16, 16)
|
|
|
135 |
### Training Results
|
136 |
| Epoch | Step | Training Loss | Validation Loss |
|
137 |
|:------:|:----:|:-------------:|:---------------:|
|
138 |
+
| 0.0294 | 1 | 0.2337 | - |
|
139 |
+
| 1.0 | 34 | - | 0.1687 |
|
140 |
+
| 1.4706 | 50 | 0.1015 | - |
|
141 |
+
| 2.0 | 68 | - | 0.1004 |
|
142 |
| 2.9412 | 100 | 0.0006 | - |
|
143 |
+
| 3.0 | 102 | - | 0.1020 |
|
144 |
+
| 4.0 | 136 | - | 0.1021 |
|
145 |
|
146 |
### Framework Versions
|
147 |
- Python: 3.10.15
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 437967672
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20188c8a8e6449a67f433e5291757c320ce4f7f783a7e85ebb6906c4b75a00e7
|
3 |
size 437967672
|
model_head.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 7055
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:faad5660c72ed5eafb75c45dc67f3478f451053598a3bc652fa8234216652eb7
|
3 |
size 7055
|