yellowstar520 commited on
Commit
7e65a92
·
1 Parent(s): 54c8382

Update IDK

Browse files
Files changed (1) hide show
  1. IDK +76 -0
IDK CHANGED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import plotly.graph_objects as go
3
+
4
+ import torch
5
+ from tqdm.auto import tqdm
6
+
7
+ from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
8
+ from point_e.diffusion.sampler import PointCloudSampler
9
+ from point_e.models.download import load_checkpoint
10
+ from point_e.models.configs import MODEL_CONFIGS, model_from_config
11
+ from point_e.util.plotting import plot_point_cloud
12
+
13
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
14
+
15
+ print('creating base model...')
16
+ base_name = 'base40M-textvec'
17
+ base_model = model_from_config(MODEL_CONFIGS[base_name], device)
18
+ base_model.eval()
19
+ base_diffusion = diffusion_from_config(DIFFUSION_CONFIGS[base_name])
20
+
21
+ print('creating upsample model...')
22
+ upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
23
+ upsampler_model.eval()
24
+ upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])
25
+
26
+ print('downloading base checkpoint...')
27
+ base_model.load_state_dict(load_checkpoint(base_name, device))
28
+
29
+ print('downloading upsampler checkpoint...')
30
+ upsampler_model.load_state_dict(load_checkpoint('upsample', device))
31
+
32
+ sampler = PointCloudSampler(
33
+ device=device,
34
+ models=[base_model, upsampler_model],
35
+ diffusions=[base_diffusion, upsampler_diffusion],
36
+ num_points=[1024, 4096 - 1024],
37
+ aux_channels=['R', 'G', 'B'],
38
+ guidance_scale=[3.0, 0.0],
39
+ model_kwargs_key_filter=('texts', ''), # Do not condition the upsampler at all
40
+ )
41
+
42
+ def inference(prompt):
43
+ samples = None
44
+ for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=dict(texts=[prompt])):
45
+ samples = x
46
+ pc = sampler.output_to_point_clouds(samples)[0]
47
+ pc = sampler.output_to_point_clouds(samples)[0]
48
+ colors=(238, 75, 43)
49
+ fig = go.Figure(
50
+ data=[
51
+ go.Scatter3d(
52
+ x=pc.coords[:,0], y=pc.coords[:,1], z=pc.coords[:,2],
53
+ mode='markers',
54
+ marker=dict(
55
+ size=2,
56
+ color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc.channels["R"], pc.channels["G"], pc.channels["B"])],
57
+ )
58
+ )
59
+ ],
60
+ layout=dict(
61
+ scene=dict(
62
+ xaxis=dict(visible=False),
63
+ yaxis=dict(visible=False),
64
+ zaxis=dict(visible=False)
65
+ )
66
+ ),
67
+ )
68
+ return fig
69
+
70
+ title="Point-E demo: text to 3D",
71
+ description="""Generated 3D Point Clouds with [Point-E](https://github.com/openai/point-e/tree/main). This demo uses a small, worse quality text-to-3D model to produce 3D point clouds directly from text descriptions.
72
+ Check out the [notebook](https://github.com/openai/point-e/blob/main/point_e/examples/text2pointcloud.ipynb).
73
+ """
74
+ )
75
+ demo.queue(max_size=1000)
76
+ demo.launch(debug=True)