yentinglin commited on
Commit
6e60dbf
·
1 Parent(s): cd7af62

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +133 -0
README.md ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: yentinglin/Taiwan-LLM-13B-v2.0-chat
3
+ inference: false
4
+ language:
5
+ - zh
6
+ library_name: transformers
7
+ license: apache-2.0
8
+ model_creator: yentinglin
9
+ model_name: Taiwan-LLM-13B-v2.0
10
+ model_type: llama
11
+ pipeline_tag: text-generation
12
+ quantized_by: yentinglin
13
+ tags:
14
+ - finetuned
15
+ ---
16
+ # TaiwanLLM 13B v2.0 - AWQ
17
+ - Model creator: [Yenting Lin](https://huggingface.co/yentinglin)
18
+ - Original model: [TaiwanLLM 13B v2.0](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat)
19
+
20
+ <!-- description start -->
21
+ ## Description
22
+
23
+ This repo contains AWQ model files for [TaiwanLLM 13B v2.0](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat).
24
+
25
+
26
+ ### About AWQ
27
+
28
+ AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
29
+
30
+ AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
31
+
32
+ It is supported by:
33
+
34
+ - [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
35
+ - [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
36
+ - [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
37
+ - [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
38
+ - [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
39
+
40
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/CmusIT5OlSXvFrbTJ7l-C.png" alt="Taiwan LLM Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/>
41
+
42
+ # 🌟 Checkout [Taiwan-LLM Demo Chat-UI](http://www.twllm.com) 🌟
43
+
44
+ # Model Card for Taiwan LLM 13B v2.0 chat
45
+
46
+ Taiwan LLM is an advanced language model tailored for Traditional Chinese, focusing on the linguistic and cultural contexts of Taiwan.
47
+ Developed from a large base model, it's enriched with diverse Taiwanese textual sources and refined through Supervised Fine-Tuning.
48
+ This model excels in language understanding and generation, aligning closely with Taiwan's cultural nuances.
49
+ It demonstrates improved performance on various benchmarks like TC-Eval, showcasing its contextual comprehension and cultural relevance.
50
+ For detailed insights into Taiwan LLM's development and features, refer to our [technical report](https://github.com/MiuLab/Taiwan-LLaMa/blob/main/twllm_paper.pdf).
51
+
52
+
53
+ ## Model description
54
+
55
+ - **Model type:** A 13B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets.
56
+ - **Language(s) (NLP):** Primarily Traditional Chinese (zh-tw)
57
+ - **Finetuned from model:** [yentinglin/Taiwan-LLM-13B-v2.0-base](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-base)
58
+
59
+ ### Model Sources
60
+
61
+ <!-- Provide the basic links for the model. -->
62
+
63
+ - **Repository:** https://github.com/MiuLab/Taiwan-LLaMa
64
+ - **Demo:** https://twllm.com/
65
+
66
+ ## Performance
67
+
68
+
69
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/HTwIzw6RDha2-PhuWqSuI.png)
70
+
71
+ TMMLUS+ score: 24.76727075757576
72
+
73
+ ## Intended uses
74
+
75
+ Here's how you can run the model using the `pipeline()` function from 🤗 Transformers:
76
+
77
+ ```python
78
+ # pip install transformers>=4.34
79
+ # pip install accelerate
80
+
81
+ import torch
82
+ from transformers import pipeline
83
+
84
+ pipe = pipeline("text-generation", model="yentinglin/Taiwan-LLM-13B-v2.0-chat", torch_dtype=torch.bfloat16, device_map="auto")
85
+
86
+ # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
87
+ messages = [
88
+ {
89
+ "role": "system",
90
+ "content": "你是一個人工智慧助理",
91
+ },
92
+ {"role": "user", "content": "東北季風如何影響台灣氣候?"},
93
+ ]
94
+ prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
95
+ outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
96
+ print(outputs[0]["generated_text"])
97
+ ```
98
+
99
+ ### Training hyperparameters
100
+
101
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/MdvHwdUvH-c926qyRAw7K.png)
102
+
103
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/kKpkvxDzOEyiAoTqmzRYO.png)
104
+
105
+
106
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/FsnlJ_fkRxf7fn5RKZnjE.png)
107
+
108
+ The following hyperparameters were used during training:
109
+ - learning_rate: 5e-05
110
+ - distributed_type: multi-GPU
111
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
112
+ - lr_scheduler_type: cosine
113
+ - lr_scheduler_warmup_ratio: 0.03
114
+ - num_epochs: 5.0
115
+
116
+ ## Citation
117
+
118
+ If you find Taiwan LLM is useful in your work, please cite it with:
119
+
120
+ ```
121
+ @misc{lin2023taiwan,
122
+ title={Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model},
123
+ author={Yen-Ting Lin and Yun-Nung Chen},
124
+ year={2023},
125
+ eprint={2311.17487},
126
+ archivePrefix={arXiv},
127
+ primaryClass={cs.CL}
128
+ }
129
+ ```
130
+
131
+ # Acknowledgement
132
+
133
+ Taiwan LLM v2 is conducted in collaboration with [Ubitus K.K.](http://ubitus.net). Ubitus provides valuable compute resources for the project.