File size: 1,893 Bytes
fe9e078
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---

library_name: transformers
license: cc-by-nc-4.0
base_model: MCG-NJU/videomae-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: videomae-base-finetuned-stroke-classification
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# videomae-base-finetuned-stroke-classification

This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2815
- Accuracy: 0.9121

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05

- train_batch_size: 24

- eval_batch_size: 24

- seed: 42

- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments

- lr_scheduler_type: linear

- lr_scheduler_warmup_ratio: 0.1
- training_steps: 495



### Training results



| Training Loss | Epoch  | Step | Validation Loss | Accuracy |

|:-------------:|:------:|:----:|:---------------:|:--------:|

| 1.1054        | 0.2020 | 100  | 0.7669          | 0.7406   |

| 0.7821        | 1.2020 | 200  | 0.6999          | 0.7198   |

| 0.4114        | 2.2020 | 300  | 0.4544          | 0.8075   |

| 0.3292        | 3.2020 | 400  | 0.3396          | 0.8698   |

| 0.2806        | 4.1919 | 495  | 0.2993          | 0.8830   |





### Framework versions



- Transformers 4.47.1

- Pytorch 2.5.1+cu124

- Datasets 3.2.0

- Tokenizers 0.21.0