File size: 9,656 Bytes
b5975ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
"""
This file is adapted from https://github.com/McGill-NLP/llm2vec.
"""

import torch

from transformers import (
    MistralModel,
    MistralPreTrainedModel,
    MistralForCausalLM,
    MistralConfig,
)
from transformers.models.mistral.modeling_mistral import (
    MistralDecoderLayer,
    MistralRMSNorm,
    MistralAttention,
    MistralFlashAttention2,
    MistralSdpaAttention,
    MistralMLP,
)
from torch import nn
from transformers.utils import logging
from transformers.cache_utils import Cache, StaticCache, SlidingWindowCache

from transformers.modeling_attn_mask_utils import AttentionMaskConverter

from peft import PeftModel

logger = logging.get_logger(__name__)


def is_transformers_attn_greater_or_equal_4_43_1():
    import importlib.metadata
    from packaging import version
    from transformers.utils.import_utils import _is_package_available
    if not _is_package_available("transformers"):
        return False

    return version.parse(importlib.metadata.version("transformers")) >= version.parse(
        "4.43.1"
    )

class ModifiedMistralAttention(MistralAttention):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.is_causal = False


class ModifiedMistralFlashAttention2(MistralFlashAttention2):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.is_causal = False


class ModifiedMistralSdpaAttention(MistralSdpaAttention):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.is_causal = False


MISTRAL_ATTENTION_CLASSES = {
    "eager": ModifiedMistralAttention,
    "flash_attention_2": ModifiedMistralFlashAttention2,
    "sdpa": ModifiedMistralSdpaAttention,
}


class ModifiedMistralDecoderLayer(MistralDecoderLayer):
    def __init__(self, config: MistralConfig, layer_idx: int):
        nn.Module.__init__(self)
        self.hidden_size = config.hidden_size

        self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](
            config, layer_idx
        )

        self.mlp = MistralMLP(config)
        self.input_layernorm = MistralRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )
        self.post_attention_layernorm = MistralRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps
        )


class MistralBiModel(MistralModel):
    _no_split_modules = ["ModifiedMistralDecoderLayer"]

    def __init__(self, config: MistralConfig):
        if not is_transformers_attn_greater_or_equal_4_43_1():
            raise ValueError(
                "The current implementation of LlamaEncoderModel follows modeling_llama.py of transformers version >= 4.43.1"
            )
        MistralPreTrainedModel.__init__(self, config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(
            config.vocab_size, config.hidden_size, self.padding_idx
        )
        assert config._attn_implementation == "flash_attention_2"
        self.layers = nn.ModuleList(
            [
                ModifiedMistralDecoderLayer(config, layer_idx)
                for layer_idx in range(config.num_hidden_layers)
            ]
        )
        self._attn_implementation = config._attn_implementation
        self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

        self.gradient_checkpointing = False
        # Initialize weights and apply final processing
        self.post_init()

    # Copied from forward() in transformers.models.mistral.modeling_mistral.MistralModel
    def _update_causal_mask(
        self,
        attention_mask: torch.Tensor,
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        use_cache: bool,
        output_attentions: bool,
    ):
        if self._attn_implementation == "flash_attention_2":
            if attention_mask is not None and use_cache:
                is_padding_right = (
                    attention_mask[:, -1].sum().item() != input_tensor.size()[0]
                )
                if is_padding_right:
                    raise ValueError(
                        "You are attempting to perform batched generation with padding_side='right'"
                        " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
                        " call `tokenizer.padding_side  = 'left'` before tokenizing the input. "
                    )
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.

        # cache_position must be valid here no matter which cache we use
        past_seen_tokens = cache_position[0] if past_key_values is not None else 0
        using_static_cache = isinstance(past_key_values, StaticCache)
        using_sliding_window_cache = isinstance(past_key_values, SlidingWindowCache)

        # if (
        #     self.config._attn_implementation == "sdpa"
        #     and not (using_static_cache or using_sliding_window_cache)
        #     and not output_attentions
        # ):
        #     if AttentionMaskConverter._ignore_causal_mask_sdpa(
        #         attention_mask,
        #         inputs_embeds=input_tensor,
        #         past_key_values_length=past_seen_tokens,
        #         sliding_window=self.config.sliding_window,
        #         is_training=self.training,
        #     ):
        #         return None

        dtype, device = input_tensor.dtype, input_tensor.device
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        # SlidingWindowCache
        if using_sliding_window_cache:
            target_length = max(sequence_length, self.config.sliding_window)
        # StaticCache
        elif using_static_cache:
            target_length = past_key_values.get_max_length()
        # DynamicCache or no cache
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        if attention_mask is not None and attention_mask.dim() == 4:
            # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
            if attention_mask.max() != 0:
                raise ValueError(
                    "Custom 4D attention mask should be passed in inverted form with max==0`"
                )
            causal_mask = attention_mask
        else:
            causal_mask = torch.zeros(
                (sequence_length, target_length), dtype=dtype, device=device
            )  # causal_mask = torch.full(
            # (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
            # )
            exclude_mask = torch.arange(
                target_length, device=device
            ) > cache_position.reshape(-1, 1)
            if self.config.sliding_window is not None:
                if (
                    not using_sliding_window_cache
                    or sequence_length > self.config.sliding_window
                ):
                    exclude_mask.bitwise_or_(
                        torch.arange(target_length, device=device)
                        <= (cache_position.reshape(-1, 1) - self.config.sliding_window)
                    )
            causal_mask *= exclude_mask
            causal_mask = causal_mask[None, None, :, :].expand(
                input_tensor.shape[0], 1, -1, -1
            )
            if attention_mask is not None:
                causal_mask = (
                    causal_mask.clone()
                )  # copy to contiguous memory for in-place edit
                if attention_mask.dim() == 2:
                    mask_length = attention_mask.shape[-1]
                    padding_mask = (
                        causal_mask[:, :, :, :mask_length]
                        + attention_mask[:, None, None, :]
                    )
                    padding_mask = padding_mask == 0
                    causal_mask[:, :, :, :mask_length] = causal_mask[
                        :, :, :, :mask_length
                    ].masked_fill(padding_mask, min_dtype)

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type == "cuda"
            and not output_attentions
        ):
            causal_mask = AttentionMaskConverter._unmask_unattended(
                causal_mask, min_dtype
            )

        return causal_mask


class MistralBiForCausalLM(MistralForCausalLM):
    def __init__(self, config):
        MistralPreTrainedModel.__init__(self, config)
        self.model = MistralBiModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    # getter for PEFT model
    def get_model_for_peft(self):
        return self.model

    # setter for PEFT model
    def set_model_for_peft(self, model: PeftModel):
        self.model = model

    # save the PEFT model
    def save_peft_model(self, path):
        self.model.save_pretrained(path)