File size: 5,256 Bytes
7956637
239bc0b
 
7956637
 
239bc0b
 
7956637
 
 
 
 
 
 
 
 
 
 
 
239bc0b
7956637
 
 
239bc0b
7956637
 
 
 
 
 
 
 
 
 
 
239bc0b
7956637
221ab03
7956637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221ab03
7956637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221ab03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7956637
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
language:
- tr
base_model: ylacombe/w2v-bert-2.0
tags:
- automatic-speech-recognition
- mozilla-foundation/common_voice_16_0
- generated_from_trainer
datasets:
- common_voice_16_0
metrics:
- wer
model-index:
- name: wav2vec2-common_voice-tr-demo
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: MOZILLA-FOUNDATION/COMMON_VOICE_16_0 - TR
      type: common_voice_16_0
      config: tr
      split: test
      args: 'Config: tr, Training split: train+validation, Eval split: test'
    metrics:
    - name: Wer
      type: wer
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-common_voice-tr-demo

This model is a fine-tuned version of [ylacombe/w2v-bert-2.0](https://huggingface.co/ylacombe/w2v-bert-2.0) on the MOZILLA-FOUNDATION/COMMON_VOICE_16_0 - TR dataset.
It achieves the following results on the evaluation set:
- Loss: nan
- Wer: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.007448827845832091
- train_batch_size: 20
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5000
- num_epochs: 15.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| No log        | 0.27  | 300   | 3.2930          | 1.0    |
| 5.6462        | 0.55  | 600   | 3.4159          | 1.0    |
| 5.6462        | 0.82  | 900   | 3.4422          | 1.0    |
| 3.3522        | 1.1   | 1200  | 3.3719          | 1.0    |
| 3.2605        | 1.37  | 1500  | 3.4026          | 1.0    |
| 3.2605        | 1.64  | 1800  | 3.4448          | 1.0    |
| 3.2766        | 1.92  | 2100  | 3.4736          | 0.9999 |
| 3.2766        | 2.19  | 2400  | 3.9828          | 1.0    |
| 3.2853        | 2.47  | 2700  | 3.5532          | 1.0    |
| 3.3389        | 2.74  | 3000  | 3.7819          | 1.0    |
| 3.3389        | 3.01  | 3300  | 3.2250          | 1.0    |
| 3.2186        | 3.29  | 3600  | 3.2373          | 1.0    |
| 3.2186        | 3.56  | 3900  | 3.2162          | 1.0    |
| 3.1916        | 3.84  | 4200  | 3.2368          | 1.0    |
| 3.2188        | 4.11  | 4500  | 3.2377          | 1.0    |
| 3.2188        | 4.38  | 4800  | 3.4207          | 1.0    |
| 5.3067        | 4.66  | 5100  | nan             | 1.0    |
| 5.3067        | 4.93  | 5400  | nan             | 1.0    |
| 0.0           | 5.21  | 5700  | nan             | 1.0    |
| 0.0           | 5.48  | 6000  | nan             | 1.0    |
| 0.0           | 5.75  | 6300  | nan             | 1.0    |
| 0.0           | 6.03  | 6600  | nan             | 1.0    |
| 0.0           | 6.3   | 6900  | nan             | 1.0    |
| 0.0           | 6.58  | 7200  | nan             | 1.0    |
| 0.0           | 6.85  | 7500  | nan             | 1.0    |
| 0.0           | 7.12  | 7800  | nan             | 1.0    |
| 0.0           | 7.4   | 8100  | nan             | 1.0    |
| 0.0           | 7.67  | 8400  | nan             | 1.0    |
| 0.0           | 7.95  | 8700  | nan             | 1.0    |
| 0.0           | 8.22  | 9000  | nan             | 1.0    |
| 0.0           | 8.49  | 9300  | nan             | 1.0    |
| 0.0           | 8.77  | 9600  | nan             | 1.0    |
| 0.0           | 9.04  | 9900  | nan             | 1.0    |
| 0.0           | 9.32  | 10200 | nan             | 1.0    |
| 0.0           | 9.59  | 10500 | nan             | 1.0    |
| 0.0           | 9.86  | 10800 | nan             | 1.0    |
| 0.0           | 10.14 | 11100 | nan             | 1.0    |
| 0.0           | 10.41 | 11400 | nan             | 1.0    |
| 0.0           | 10.68 | 11700 | nan             | 1.0    |
| 0.0           | 10.96 | 12000 | nan             | 1.0    |
| 0.0           | 11.23 | 12300 | nan             | 1.0    |
| 0.0           | 11.51 | 12600 | nan             | 1.0    |
| 0.0           | 11.78 | 12900 | nan             | 1.0    |
| 0.0           | 12.05 | 13200 | nan             | 1.0    |
| 0.0           | 12.33 | 13500 | nan             | 1.0    |
| 0.0           | 12.6  | 13800 | nan             | 1.0    |
| 0.0           | 12.88 | 14100 | nan             | 1.0    |
| 0.0           | 13.15 | 14400 | nan             | 1.0    |
| 0.0           | 13.42 | 14700 | nan             | 1.0    |
| 0.0           | 13.7  | 15000 | nan             | 1.0    |
| 0.0           | 13.97 | 15300 | nan             | 1.0    |
| 0.0           | 14.25 | 15600 | nan             | 1.0    |
| 0.0           | 14.52 | 15900 | nan             | 1.0    |
| 0.0           | 14.79 | 16200 | nan             | 1.0    |


### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.15.0