File size: 6,393 Bytes
b8d6f45 65b9a95 bf68cdc 5ce0445 b43e879 b8d6f45 65b9a95 b8d6f45 5ce0445 b8d6f45 b43e879 5ce0445 b8d6f45 65b9a95 240650e 65b9a95 b2418a1 65b9a95 5ce0445 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
---
library_name: transformers
language:
- multilingual
- bn
- cs
- de
- en
- et
- fi
- fr
- gu
- ha
- hi
- is
- ja
- kk
- km
- lt
- lv
- pl
- ps
- ru
- ta
- tr
- uk
- xh
- zh
- zu
license: apache-2.0
base_model: answerdotai/ModernBERT-large
tags:
- quality-estimation
- regression
- generated_from_trainer
datasets:
- ymoslem/wmt-da-human-evaluation
model-index:
- name: Quality Estimation for Machine Translation
results:
- task:
type: regression
dataset:
name: ymoslem/wmt-da-human-evaluation
type: QE
metrics:
- name: Pearson Correlation
type: Pearson
value: 0.4589
- name: Mean Absolute Error
type: MAE
value: 0.1861
- name: Root Mean Squared Error
type: RMSE
value: 0.2375
- name: R-Squared
type: R2
value: 0.2106
metrics:
- pearsonr
- mae
- r_squared
new_version: ymoslem/ModernBERT-large-qe-v1
---
# Quality Estimation for Machine Translation
This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large)
on the [ymoslem/wmt-da-human-evaluation](https://huggingface.co/ymoslem/wmt-da-human-evaluation) dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0564
## Model description
This model is for reference-free quality estimation (QE) of machine translation (MT) systems.
## Training procedure
### Training hyperparameters
This version of the model uses `tokenizer.model_max_length=512`.
The model with full length of 8192 can be found here [ymoslem/ModernBERT-large-qe-v1](https://huggingface.co/ymoslem/ModernBERT-large-qe-v1/)
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- training_steps: 10000
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.0631 | 0.1004 | 1000 | 0.0674 |
| 0.0614 | 0.2007 | 2000 | 0.0599 |
| 0.0578 | 0.3011 | 3000 | 0.0585 |
| 0.0585 | 0.4015 | 4000 | 0.0579 |
| 0.0568 | 0.5019 | 5000 | 0.0570 |
| 0.057 | 0.6022 | 6000 | 0.0568 |
| 0.0579 | 0.7026 | 7000 | 0.0567 |
| 0.0573 | 0.8030 | 8000 | 0.0565 |
| 0.0568 | 0.9033 | 9000 | 0.0564 |
| 0.0571 | 1.0037 | 10000 | 0.0564 |
### Framework versions
- Transformers 4.48.0
- Pytorch 2.4.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
## Inference
1. Install the required libraries.
```bash
pip3 install --upgrade datasets accelerate transformers
pip3 install --upgrade flash_attn triton
```
2. Load the test dataset.
```python
from datasets import load_dataset
test_dataset = load_dataset("ymoslem/wmt-da-human-evaluation",
split="test",
trust_remote_code=True
)
print(test_dataset)
```
3. Load the model and tokenizer:
```python
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import torch
# Load the fine-tuned model and tokenizer
model_name = "ymoslem/ModernBERT-large-qe-maxlen512-v1"
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Move model to GPU if available
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
model.eval()
```
4. Prepare the dataset. Each source segment `src` and target segment `tgt` are separated by the `sep_token`, which is `'</s>'` for ModernBERT.
```python
sep_token = tokenizer.sep_token
input_test_texts = [f"{src} {sep_token} {tgt}" for src, tgt in zip(test_dataset["src"], test_dataset["mt"])]
```
5. Generate predictions.
If you print `model.config.problem_type`, the output is `regression`.
Still, you can use the "text-classification" pipeline as follows (cf. [pipeline documentation](https://huggingface.co/docs/transformers/en/main_classes/pipelines#transformers.TextClassificationPipeline)):
```python
from transformers import pipeline
classifier = pipeline("text-classification",
model=model_name,
tokenizer=tokenizer,
device=0,
)
predictions = classifier(input_test_texts,
batch_size=128,
truncation=True,
padding="max_length",
max_length=tokenizer.model_max_length,
)
predictions = [prediction["score"] for prediction in predictions]
```
Alternatively, you can use an elaborate version of the code, which is slightly faster and provides more control.
```python
from torch.utils.data import DataLoader
import torch
from tqdm.auto import tqdm
# Tokenization function
def process_batch(batch, tokenizer, device):
sep_token = tokenizer.sep_token
input_texts = [f"{src} {sep_token} {tgt}" for src, tgt in zip(batch["src"], batch["mt"])]
tokens = tokenizer(input_texts,
truncation=True,
padding="max_length",
max_length=tokenizer.model_max_length,
return_tensors="pt",
).to(device)
return tokens
# Create a DataLoader for batching
test_dataloader = DataLoader(test_dataset,
batch_size=128, # Adjust batch size as needed
shuffle=False)
# List to store all predictions
predictions = []
with torch.no_grad():
for batch in tqdm(test_dataloader, desc="Inference Progress", unit="batch"):
tokens = process_batch(batch, tokenizer, device)
# Forward pass: Generate model's logits
outputs = model(**tokens)
# Get logits (predictions)
logits = outputs.logits
# Extract the regression predicted values
batch_predictions = logits.squeeze()
# Extend the list with the predictions
predictions.extend(batch_predictions.tolist())
``` |