Training in progress, step 500
Browse files- adapter_config.json +28 -0
- adapter_model.safetensors +3 -0
- qwen.tiktoken +0 -0
- runs/May11_02-40-27_d96183b7b29f/events.out.tfevents.1715395303.d96183b7b29f.1272.0 +3 -0
- special_tokens_map.json +10 -0
- tokenization_qwen.py +276 -0
- tokenizer_config.json +17 -0
- trainer_log.jsonl +51 -0
- training_args.bin +3 -0
adapter_config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "Qwen/Qwen-14B",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layer_replication": null,
|
10 |
+
"layers_pattern": null,
|
11 |
+
"layers_to_transform": null,
|
12 |
+
"loftq_config": {},
|
13 |
+
"lora_alpha": 16,
|
14 |
+
"lora_dropout": 0.0,
|
15 |
+
"megatron_config": null,
|
16 |
+
"megatron_core": "megatron.core",
|
17 |
+
"modules_to_save": null,
|
18 |
+
"peft_type": "LORA",
|
19 |
+
"r": 8,
|
20 |
+
"rank_pattern": {},
|
21 |
+
"revision": null,
|
22 |
+
"target_modules": [
|
23 |
+
"c_attn"
|
24 |
+
],
|
25 |
+
"task_type": "CAUSAL_LM",
|
26 |
+
"use_dora": false,
|
27 |
+
"use_rslora": false
|
28 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bbd1cc5f836a389e7914a7eea6fd789515c77d9e70304f0d46df1330d2a1d81
|
3 |
+
size 26224792
|
qwen.tiktoken
ADDED
The diff for this file is too large to render.
See raw diff
|
|
runs/May11_02-40-27_d96183b7b29f/events.out.tfevents.1715395303.d96183b7b29f.1272.0
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33c1e6aa4e2f99cfd06ffcf4a29df62040cb9c79af218f7f3da23acda473416f
|
3 |
+
size 16584
|
special_tokens_map.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eos_token": {
|
3 |
+
"content": "<|endoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"pad_token": "<|endoftext|>"
|
10 |
+
}
|
tokenization_qwen.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Alibaba Cloud.
|
2 |
+
#
|
3 |
+
# This source code is licensed under the license found in the
|
4 |
+
# LICENSE file in the root directory of this source tree.
|
5 |
+
|
6 |
+
"""Tokenization classes for QWen."""
|
7 |
+
|
8 |
+
import base64
|
9 |
+
import logging
|
10 |
+
import os
|
11 |
+
import unicodedata
|
12 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
13 |
+
|
14 |
+
import tiktoken
|
15 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
16 |
+
|
17 |
+
logger = logging.getLogger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
VOCAB_FILES_NAMES = {"vocab_file": "qwen.tiktoken"}
|
21 |
+
|
22 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
23 |
+
ENDOFTEXT = "<|endoftext|>"
|
24 |
+
IMSTART = "<|im_start|>"
|
25 |
+
IMEND = "<|im_end|>"
|
26 |
+
# as the default behavior is changed to allow special tokens in
|
27 |
+
# regular texts, the surface forms of special tokens need to be
|
28 |
+
# as different as possible to minimize the impact
|
29 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
30 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
31 |
+
SPECIAL_START_ID = 151643
|
32 |
+
SPECIAL_TOKENS = tuple(
|
33 |
+
enumerate(
|
34 |
+
(
|
35 |
+
(
|
36 |
+
ENDOFTEXT,
|
37 |
+
IMSTART,
|
38 |
+
IMEND,
|
39 |
+
)
|
40 |
+
+ EXTRAS
|
41 |
+
),
|
42 |
+
start=SPECIAL_START_ID,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
46 |
+
|
47 |
+
|
48 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
49 |
+
with open(tiktoken_bpe_file, "rb") as f:
|
50 |
+
contents = f.read()
|
51 |
+
return {
|
52 |
+
base64.b64decode(token): int(rank)
|
53 |
+
for token, rank in (line.split() for line in contents.splitlines() if line)
|
54 |
+
}
|
55 |
+
|
56 |
+
|
57 |
+
class QWenTokenizer(PreTrainedTokenizer):
|
58 |
+
"""QWen tokenizer."""
|
59 |
+
|
60 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
vocab_file,
|
65 |
+
errors="replace",
|
66 |
+
extra_vocab_file=None,
|
67 |
+
**kwargs,
|
68 |
+
):
|
69 |
+
super().__init__(**kwargs)
|
70 |
+
|
71 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
72 |
+
# use ignore if you are in streaming inference
|
73 |
+
self.errors = errors
|
74 |
+
|
75 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
76 |
+
self.special_tokens = {
|
77 |
+
token: index
|
78 |
+
for index, token in SPECIAL_TOKENS
|
79 |
+
}
|
80 |
+
|
81 |
+
# try load extra vocab from file
|
82 |
+
if extra_vocab_file is not None:
|
83 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
84 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
85 |
+
for token, index in extra_mergeable_ranks.items():
|
86 |
+
if token in self.mergeable_ranks:
|
87 |
+
logger.info(f"extra token {token} exists, skipping")
|
88 |
+
continue
|
89 |
+
if index in used_ids:
|
90 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
91 |
+
continue
|
92 |
+
self.mergeable_ranks[token] = index
|
93 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
94 |
+
|
95 |
+
enc = tiktoken.Encoding(
|
96 |
+
"Qwen",
|
97 |
+
pat_str=PAT_STR,
|
98 |
+
mergeable_ranks=self.mergeable_ranks,
|
99 |
+
special_tokens=self.special_tokens,
|
100 |
+
)
|
101 |
+
assert (
|
102 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
103 |
+
), f"{len(self.mergeable_ranks) + len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
104 |
+
|
105 |
+
self.decoder = {
|
106 |
+
v: k for k, v in self.mergeable_ranks.items()
|
107 |
+
} # type: dict[int, bytes|str]
|
108 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
109 |
+
|
110 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
111 |
+
|
112 |
+
self.eod_id = self.tokenizer.eot_token
|
113 |
+
self.im_start_id = self.special_tokens[IMSTART]
|
114 |
+
self.im_end_id = self.special_tokens[IMEND]
|
115 |
+
|
116 |
+
def __getstate__(self):
|
117 |
+
# for pickle lovers
|
118 |
+
state = self.__dict__.copy()
|
119 |
+
del state["tokenizer"]
|
120 |
+
return state
|
121 |
+
|
122 |
+
def __setstate__(self, state):
|
123 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
124 |
+
self.__dict__.update(state)
|
125 |
+
enc = tiktoken.Encoding(
|
126 |
+
"Qwen",
|
127 |
+
pat_str=PAT_STR,
|
128 |
+
mergeable_ranks=self.mergeable_ranks,
|
129 |
+
special_tokens=self.special_tokens,
|
130 |
+
)
|
131 |
+
self.tokenizer = enc
|
132 |
+
|
133 |
+
def __len__(self) -> int:
|
134 |
+
return self.tokenizer.n_vocab
|
135 |
+
|
136 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
137 |
+
return self.mergeable_ranks
|
138 |
+
|
139 |
+
def convert_tokens_to_ids(
|
140 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
141 |
+
) -> List[int]:
|
142 |
+
ids = []
|
143 |
+
if isinstance(tokens, (str, bytes)):
|
144 |
+
if tokens in self.special_tokens:
|
145 |
+
return self.special_tokens[tokens]
|
146 |
+
else:
|
147 |
+
return self.mergeable_ranks.get(tokens)
|
148 |
+
for token in tokens:
|
149 |
+
if token in self.special_tokens:
|
150 |
+
ids.append(self.special_tokens[token])
|
151 |
+
else:
|
152 |
+
ids.append(self.mergeable_ranks.get(token))
|
153 |
+
return ids
|
154 |
+
|
155 |
+
def _add_tokens(
|
156 |
+
self,
|
157 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
158 |
+
special_tokens: bool = False,
|
159 |
+
) -> int:
|
160 |
+
if not special_tokens and new_tokens:
|
161 |
+
raise ValueError("Adding regular tokens is not supported")
|
162 |
+
for token in new_tokens:
|
163 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
164 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
165 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
166 |
+
return 0
|
167 |
+
|
168 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
169 |
+
"""
|
170 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
171 |
+
|
172 |
+
Returns:
|
173 |
+
`Tuple(str)`: Paths to the files saved.
|
174 |
+
"""
|
175 |
+
file_path = os.path.join(save_directory, "qwen.tiktoken")
|
176 |
+
with open(file_path, "w", encoding="utf8") as w:
|
177 |
+
for k, v in self.mergeable_ranks.items():
|
178 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
179 |
+
w.write(line)
|
180 |
+
return (file_path,)
|
181 |
+
|
182 |
+
def tokenize(
|
183 |
+
self,
|
184 |
+
text: str,
|
185 |
+
allowed_special: Union[Set, str] = "all",
|
186 |
+
disallowed_special: Union[Collection, str] = (),
|
187 |
+
**kwargs,
|
188 |
+
) -> List[Union[bytes, str]]:
|
189 |
+
"""
|
190 |
+
Converts a string in a sequence of tokens.
|
191 |
+
|
192 |
+
Args:
|
193 |
+
text (`str`):
|
194 |
+
The sequence to be encoded.
|
195 |
+
allowed_special (`Literal["all"]` or `set`):
|
196 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
197 |
+
Default to "all".
|
198 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
199 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
200 |
+
Default to an empty tuple.
|
201 |
+
|
202 |
+
kwargs (additional keyword arguments, *optional*):
|
203 |
+
Will be passed to the underlying model specific encode method.
|
204 |
+
|
205 |
+
Returns:
|
206 |
+
`List[bytes|str]`: The list of tokens.
|
207 |
+
"""
|
208 |
+
tokens = []
|
209 |
+
text = unicodedata.normalize("NFC", text)
|
210 |
+
|
211 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
212 |
+
for t in self.tokenizer.encode(
|
213 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
214 |
+
):
|
215 |
+
tokens.append(self.decoder[t])
|
216 |
+
return tokens
|
217 |
+
|
218 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
219 |
+
"""
|
220 |
+
Converts a sequence of tokens in a single string.
|
221 |
+
"""
|
222 |
+
text = ""
|
223 |
+
temp = b""
|
224 |
+
for t in tokens:
|
225 |
+
if isinstance(t, str):
|
226 |
+
if temp:
|
227 |
+
text += temp.decode("utf-8", errors=self.errors)
|
228 |
+
temp = b""
|
229 |
+
text += t
|
230 |
+
elif isinstance(t, bytes):
|
231 |
+
temp += t
|
232 |
+
else:
|
233 |
+
raise TypeError("token should only be of type types or str")
|
234 |
+
if temp:
|
235 |
+
text += temp.decode("utf-8", errors=self.errors)
|
236 |
+
return text
|
237 |
+
|
238 |
+
@property
|
239 |
+
def vocab_size(self):
|
240 |
+
return self.tokenizer.n_vocab
|
241 |
+
|
242 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
243 |
+
"""Converts an id to a token, special tokens included"""
|
244 |
+
if index in self.decoder:
|
245 |
+
return self.decoder[index]
|
246 |
+
raise ValueError("unknown ids")
|
247 |
+
|
248 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
249 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
250 |
+
if token in self.special_tokens:
|
251 |
+
return self.special_tokens[token]
|
252 |
+
if token in self.mergeable_ranks:
|
253 |
+
return self.mergeable_ranks[token]
|
254 |
+
raise ValueError("unknown token")
|
255 |
+
|
256 |
+
def _tokenize(self, text: str, **kwargs):
|
257 |
+
"""
|
258 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
259 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
260 |
+
|
261 |
+
Do NOT take care of added tokens.
|
262 |
+
"""
|
263 |
+
raise NotImplementedError
|
264 |
+
|
265 |
+
def _decode(
|
266 |
+
self,
|
267 |
+
token_ids: Union[int, List[int]],
|
268 |
+
skip_special_tokens: bool = False,
|
269 |
+
errors: str = None,
|
270 |
+
**kwargs,
|
271 |
+
) -> str:
|
272 |
+
if isinstance(token_ids, int):
|
273 |
+
token_ids = [token_ids]
|
274 |
+
if skip_special_tokens:
|
275 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
276 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
tokenizer_config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {},
|
3 |
+
"auto_map": {
|
4 |
+
"AutoTokenizer": [
|
5 |
+
"tokenization_qwen.QWenTokenizer",
|
6 |
+
null
|
7 |
+
]
|
8 |
+
},
|
9 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ content }}{% elif message['role'] == 'assistant' %}{{ content }}{% endif %}{% endfor %}",
|
10 |
+
"clean_up_tokenization_spaces": true,
|
11 |
+
"eos_token": "<|endoftext|>",
|
12 |
+
"model_max_length": 8192,
|
13 |
+
"pad_token": "<|endoftext|>",
|
14 |
+
"padding_side": "right",
|
15 |
+
"split_special_tokens": false,
|
16 |
+
"tokenizer_class": "QWenTokenizer"
|
17 |
+
}
|
trainer_log.jsonl
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{"current_steps": 10, "total_steps": 1944, "loss": 2.7232, "learning_rate": 5e-06, "epoch": 0.01542317331791016, "percentage": 0.51, "elapsed_time": "0:01:09", "remaining_time": "3:45:00"}
|
2 |
+
{"current_steps": 20, "total_steps": 1944, "loss": 2.8025, "learning_rate": 1e-05, "epoch": 0.03084634663582032, "percentage": 1.03, "elapsed_time": "0:02:19", "remaining_time": "3:43:44"}
|
3 |
+
{"current_steps": 30, "total_steps": 1944, "loss": 2.7466, "learning_rate": 1.5e-05, "epoch": 0.04626951995373048, "percentage": 1.54, "elapsed_time": "0:03:29", "remaining_time": "3:42:37"}
|
4 |
+
{"current_steps": 40, "total_steps": 1944, "loss": 2.7862, "learning_rate": 2e-05, "epoch": 0.06169269327164064, "percentage": 2.06, "elapsed_time": "0:04:39", "remaining_time": "3:41:27"}
|
5 |
+
{"current_steps": 50, "total_steps": 1944, "loss": 2.7836, "learning_rate": 2.5e-05, "epoch": 0.0771158665895508, "percentage": 2.57, "elapsed_time": "0:05:48", "remaining_time": "3:40:16"}
|
6 |
+
{"current_steps": 60, "total_steps": 1944, "loss": 2.7271, "learning_rate": 3e-05, "epoch": 0.09253903990746096, "percentage": 3.09, "elapsed_time": "0:06:58", "remaining_time": "3:39:06"}
|
7 |
+
{"current_steps": 70, "total_steps": 1944, "loss": 2.7783, "learning_rate": 3.5e-05, "epoch": 0.10796221322537113, "percentage": 3.6, "elapsed_time": "0:08:08", "remaining_time": "3:37:57"}
|
8 |
+
{"current_steps": 80, "total_steps": 1944, "loss": 2.7324, "learning_rate": 4e-05, "epoch": 0.12338538654328128, "percentage": 4.12, "elapsed_time": "0:09:18", "remaining_time": "3:36:46"}
|
9 |
+
{"current_steps": 90, "total_steps": 1944, "loss": 2.7053, "learning_rate": 4.5e-05, "epoch": 0.13880855986119145, "percentage": 4.63, "elapsed_time": "0:10:27", "remaining_time": "3:35:35"}
|
10 |
+
{"current_steps": 100, "total_steps": 1944, "loss": 2.5806, "learning_rate": 5e-05, "epoch": 0.1542317331791016, "percentage": 5.14, "elapsed_time": "0:11:37", "remaining_time": "3:34:25"}
|
11 |
+
{"current_steps": 110, "total_steps": 1944, "loss": 2.7242, "learning_rate": 5.500000000000001e-05, "epoch": 0.16965490649701176, "percentage": 5.66, "elapsed_time": "0:12:47", "remaining_time": "3:33:14"}
|
12 |
+
{"current_steps": 120, "total_steps": 1944, "loss": 2.6331, "learning_rate": 6e-05, "epoch": 0.18507807981492191, "percentage": 6.17, "elapsed_time": "0:13:57", "remaining_time": "3:32:03"}
|
13 |
+
{"current_steps": 130, "total_steps": 1944, "loss": 2.508, "learning_rate": 6.500000000000001e-05, "epoch": 0.20050125313283207, "percentage": 6.69, "elapsed_time": "0:15:06", "remaining_time": "3:30:54"}
|
14 |
+
{"current_steps": 140, "total_steps": 1944, "loss": 2.4189, "learning_rate": 7e-05, "epoch": 0.21592442645074225, "percentage": 7.2, "elapsed_time": "0:16:16", "remaining_time": "3:29:44"}
|
15 |
+
{"current_steps": 150, "total_steps": 1944, "loss": 2.351, "learning_rate": 7.500000000000001e-05, "epoch": 0.2313475997686524, "percentage": 7.72, "elapsed_time": "0:17:26", "remaining_time": "3:28:35"}
|
16 |
+
{"current_steps": 160, "total_steps": 1944, "loss": 2.2376, "learning_rate": 8e-05, "epoch": 0.24677077308656256, "percentage": 8.23, "elapsed_time": "0:18:36", "remaining_time": "3:27:24"}
|
17 |
+
{"current_steps": 170, "total_steps": 1944, "loss": 2.2678, "learning_rate": 8.5e-05, "epoch": 0.26219394640447274, "percentage": 8.74, "elapsed_time": "0:19:45", "remaining_time": "3:26:13"}
|
18 |
+
{"current_steps": 180, "total_steps": 1944, "loss": 2.2033, "learning_rate": 9e-05, "epoch": 0.2776171197223829, "percentage": 9.26, "elapsed_time": "0:20:55", "remaining_time": "3:25:02"}
|
19 |
+
{"current_steps": 190, "total_steps": 1944, "loss": 2.126, "learning_rate": 9.5e-05, "epoch": 0.29304029304029305, "percentage": 9.77, "elapsed_time": "0:22:04", "remaining_time": "3:23:51"}
|
20 |
+
{"current_steps": 200, "total_steps": 1944, "loss": 2.4127, "learning_rate": 0.0001, "epoch": 0.3084634663582032, "percentage": 10.29, "elapsed_time": "0:23:14", "remaining_time": "3:22:41"}
|
21 |
+
{"current_steps": 210, "total_steps": 1944, "loss": 2.0718, "learning_rate": 9.999188786725007e-05, "epoch": 0.32388663967611336, "percentage": 10.8, "elapsed_time": "0:24:24", "remaining_time": "3:21:30"}
|
22 |
+
{"current_steps": 220, "total_steps": 1944, "loss": 2.2014, "learning_rate": 9.996755410126815e-05, "epoch": 0.3393098129940235, "percentage": 11.32, "elapsed_time": "0:25:33", "remaining_time": "3:20:19"}
|
23 |
+
{"current_steps": 230, "total_steps": 1944, "loss": 2.0259, "learning_rate": 9.992700659800388e-05, "epoch": 0.3547329863119337, "percentage": 11.83, "elapsed_time": "0:26:43", "remaining_time": "3:19:09"}
|
24 |
+
{"current_steps": 240, "total_steps": 1944, "loss": 2.3585, "learning_rate": 9.987025851452639e-05, "epoch": 0.37015615962984383, "percentage": 12.35, "elapsed_time": "0:27:53", "remaining_time": "3:17:58"}
|
25 |
+
{"current_steps": 250, "total_steps": 1944, "loss": 2.2215, "learning_rate": 9.979732826475515e-05, "epoch": 0.385579332947754, "percentage": 12.86, "elapsed_time": "0:29:02", "remaining_time": "3:16:48"}
|
26 |
+
{"current_steps": 260, "total_steps": 1944, "loss": 2.3239, "learning_rate": 9.970823951348487e-05, "epoch": 0.40100250626566414, "percentage": 13.37, "elapsed_time": "0:30:12", "remaining_time": "3:15:38"}
|
27 |
+
{"current_steps": 270, "total_steps": 1944, "loss": 2.2053, "learning_rate": 9.960302116870661e-05, "epoch": 0.4164256795835743, "percentage": 13.89, "elapsed_time": "0:31:21", "remaining_time": "3:14:28"}
|
28 |
+
{"current_steps": 280, "total_steps": 1944, "loss": 2.2688, "learning_rate": 9.948170737222762e-05, "epoch": 0.4318488529014845, "percentage": 14.4, "elapsed_time": "0:32:31", "remaining_time": "3:13:17"}
|
29 |
+
{"current_steps": 290, "total_steps": 1944, "loss": 2.2533, "learning_rate": 9.934433748859274e-05, "epoch": 0.44727202621939466, "percentage": 14.92, "elapsed_time": "0:33:41", "remaining_time": "3:12:10"}
|
30 |
+
{"current_steps": 300, "total_steps": 1944, "loss": 2.1101, "learning_rate": 9.919095609231126e-05, "epoch": 0.4626951995373048, "percentage": 15.43, "elapsed_time": "0:34:51", "remaining_time": "3:11:00"}
|
31 |
+
{"current_steps": 310, "total_steps": 1944, "loss": 2.1293, "learning_rate": 9.902161295339307e-05, "epoch": 0.47811837285521497, "percentage": 15.95, "elapsed_time": "0:36:01", "remaining_time": "3:09:50"}
|
32 |
+
{"current_steps": 320, "total_steps": 1944, "loss": 2.0417, "learning_rate": 9.883636302119912e-05, "epoch": 0.4935415461731251, "percentage": 16.46, "elapsed_time": "0:37:10", "remaining_time": "3:08:40"}
|
33 |
+
{"current_steps": 330, "total_steps": 1944, "loss": 2.1096, "learning_rate": 9.863526640661107e-05, "epoch": 0.5089647194910353, "percentage": 16.98, "elapsed_time": "0:38:20", "remaining_time": "3:07:30"}
|
34 |
+
{"current_steps": 340, "total_steps": 1944, "loss": 2.2787, "learning_rate": 9.841838836252627e-05, "epoch": 0.5243878928089455, "percentage": 17.49, "elapsed_time": "0:39:29", "remaining_time": "3:06:20"}
|
35 |
+
{"current_steps": 350, "total_steps": 1944, "loss": 2.3788, "learning_rate": 9.818579926268405e-05, "epoch": 0.5398110661268556, "percentage": 18.0, "elapsed_time": "0:40:39", "remaining_time": "3:05:10"}
|
36 |
+
{"current_steps": 360, "total_steps": 1944, "loss": 2.1264, "learning_rate": 9.793757457883062e-05, "epoch": 0.5552342394447658, "percentage": 18.52, "elapsed_time": "0:41:49", "remaining_time": "3:04:01"}
|
37 |
+
{"current_steps": 370, "total_steps": 1944, "loss": 2.2351, "learning_rate": 9.767379485622943e-05, "epoch": 0.5706574127626759, "percentage": 19.03, "elapsed_time": "0:42:59", "remaining_time": "3:02:51"}
|
38 |
+
{"current_steps": 380, "total_steps": 1944, "loss": 2.1219, "learning_rate": 9.739454568752556e-05, "epoch": 0.5860805860805861, "percentage": 19.55, "elapsed_time": "0:44:08", "remaining_time": "3:01:42"}
|
39 |
+
{"current_steps": 390, "total_steps": 1944, "loss": 2.0565, "learning_rate": 9.709991768497208e-05, "epoch": 0.6015037593984962, "percentage": 20.06, "elapsed_time": "0:45:18", "remaining_time": "3:00:32"}
|
40 |
+
{"current_steps": 400, "total_steps": 1944, "loss": 2.2406, "learning_rate": 9.679000645102771e-05, "epoch": 0.6169269327164064, "percentage": 20.58, "elapsed_time": "0:46:28", "remaining_time": "2:59:23"}
|
41 |
+
{"current_steps": 410, "total_steps": 1944, "loss": 2.154, "learning_rate": 9.646491254733532e-05, "epoch": 0.6323501060343165, "percentage": 21.09, "elapsed_time": "0:47:38", "remaining_time": "2:58:13"}
|
42 |
+
{"current_steps": 420, "total_steps": 1944, "loss": 2.1421, "learning_rate": 9.612474146209096e-05, "epoch": 0.6477732793522267, "percentage": 21.6, "elapsed_time": "0:48:48", "remaining_time": "2:57:04"}
|
43 |
+
{"current_steps": 430, "total_steps": 1944, "loss": 2.1537, "learning_rate": 9.576960357581475e-05, "epoch": 0.6631964526701368, "percentage": 22.12, "elapsed_time": "0:49:57", "remaining_time": "2:55:55"}
|
44 |
+
{"current_steps": 440, "total_steps": 1944, "loss": 2.1743, "learning_rate": 9.539961412553375e-05, "epoch": 0.678619625988047, "percentage": 22.63, "elapsed_time": "0:51:07", "remaining_time": "2:54:45"}
|
45 |
+
{"current_steps": 450, "total_steps": 1944, "loss": 2.0946, "learning_rate": 9.501489316738945e-05, "epoch": 0.6940427993059572, "percentage": 23.15, "elapsed_time": "0:52:17", "remaining_time": "2:53:36"}
|
46 |
+
{"current_steps": 460, "total_steps": 1944, "loss": 2.1048, "learning_rate": 9.461556553768123e-05, "epoch": 0.7094659726238673, "percentage": 23.66, "elapsed_time": "0:53:27", "remaining_time": "2:52:26"}
|
47 |
+
{"current_steps": 470, "total_steps": 1944, "loss": 2.1311, "learning_rate": 9.420176081235881e-05, "epoch": 0.7248891459417776, "percentage": 24.18, "elapsed_time": "0:54:36", "remaining_time": "2:51:16"}
|
48 |
+
{"current_steps": 480, "total_steps": 1944, "loss": 2.3041, "learning_rate": 9.377361326497674e-05, "epoch": 0.7403123192596877, "percentage": 24.69, "elapsed_time": "0:55:46", "remaining_time": "2:50:06"}
|
49 |
+
{"current_steps": 490, "total_steps": 1944, "loss": 2.0653, "learning_rate": 9.333126182312465e-05, "epoch": 0.7557354925775979, "percentage": 25.21, "elapsed_time": "0:56:55", "remaining_time": "2:48:55"}
|
50 |
+
{"current_steps": 500, "total_steps": 1944, "loss": 1.9974, "learning_rate": 9.287485002334733e-05, "epoch": 0.771158665895508, "percentage": 25.72, "elapsed_time": "0:58:05", "remaining_time": "2:47:45"}
|
51 |
+
{"current_steps": 500, "total_steps": 1944, "eval_loss": 2.0961015224456787, "epoch": 0.771158665895508, "percentage": 25.72, "elapsed_time": "1:00:39", "remaining_time": "2:55:12"}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32bf23f5bcb38c28d4d6096effe4db08214b617b327540fc98708e16abd7887d
|
3 |
+
size 5176
|