Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
inference: true
|
5 |
+
widget:
|
6 |
+
- text: Hello!
|
7 |
+
example_title: Hello world
|
8 |
+
group: Python
|
9 |
+
---
|
10 |
+
|
11 |
+
This model is for debugging. It is randomly initialized with the config from [Qwen/QwQ-32B-Preview](https://huggingface.co/Qwen/QwQ-32B-Preview) but is of smaller size.
|
12 |
+
|
13 |
+
Codes:
|
14 |
+
```python
|
15 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
16 |
+
import transformers
|
17 |
+
import torch
|
18 |
+
import os
|
19 |
+
from huggingface_hub import create_repo, upload_folder
|
20 |
+
import accelerate
|
21 |
+
|
22 |
+
model_id = 'Qwen/QwQ-32B-Preview'
|
23 |
+
save_path = '/tmp/yujiepan/QwQ-tiny-random'
|
24 |
+
repo_id = 'yujiepan/QwQ-tiny-random'
|
25 |
+
|
26 |
+
os.system(f'rm -rf {save_path}')
|
27 |
+
|
28 |
+
config = transformers.AutoConfig.from_pretrained(
|
29 |
+
model_id,
|
30 |
+
trust_remote_code=True,
|
31 |
+
)
|
32 |
+
config._name_or_path = model_id
|
33 |
+
config.hidden_size = 8
|
34 |
+
config.intermediate_size = 16
|
35 |
+
config.num_key_value_heads = 1
|
36 |
+
config.num_attention_heads = 2
|
37 |
+
config.num_hidden_layers = 2
|
38 |
+
config.max_window_layers = 1
|
39 |
+
|
40 |
+
model = transformers.AutoModelForCausalLM.from_config(
|
41 |
+
config,
|
42 |
+
trust_remote_code=True,
|
43 |
+
)
|
44 |
+
model.generation_config = transformers.GenerationConfig.from_pretrained(
|
45 |
+
model_id)
|
46 |
+
model = model.to(torch.bfloat16)
|
47 |
+
|
48 |
+
transformers.set_seed(42)
|
49 |
+
num_params = 0
|
50 |
+
with torch.no_grad():
|
51 |
+
for name, p in sorted(model.named_parameters()):
|
52 |
+
print(name, p.shape)
|
53 |
+
torch.nn.init.uniform_(p, -0.5, 0.5)
|
54 |
+
num_params += p.numel()
|
55 |
+
print("Total number of parameters:", num_params)
|
56 |
+
model.save_pretrained(save_path)
|
57 |
+
|
58 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained(
|
59 |
+
model_id,
|
60 |
+
trust_remote_code=True,
|
61 |
+
)
|
62 |
+
tokenizer.save_pretrained(save_path)
|
63 |
+
|
64 |
+
os.system(f'ls -alh {save_path}')
|
65 |
+
create_repo(repo_id, exist_ok=True)
|
66 |
+
upload_folder(repo_id=repo_id, folder_path=save_path)
|
67 |
+
|
68 |
+
|
69 |
+
def try_example(model, tokenizer):
|
70 |
+
prompt = "How many r in strawberry."
|
71 |
+
messages = [
|
72 |
+
{"role": "system", "content": "You are a helpful and harmless assistant. You should think step-by-step."},
|
73 |
+
{"role": "user", "content": prompt}
|
74 |
+
]
|
75 |
+
text = tokenizer.apply_chat_template(
|
76 |
+
messages,
|
77 |
+
tokenize=False,
|
78 |
+
add_generation_prompt=True
|
79 |
+
)
|
80 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
81 |
+
|
82 |
+
generated_ids = model.generate(
|
83 |
+
**model_inputs,
|
84 |
+
max_new_tokens=32
|
85 |
+
)
|
86 |
+
generated_ids = [
|
87 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
88 |
+
]
|
89 |
+
|
90 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
91 |
+
print(response)
|
92 |
+
|
93 |
+
try_example(model, tokenizer)
|
94 |
+
```
|