File size: 1,785 Bytes
5d63f52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
library_name: transformers
pipeline_tag: text-generation
inference: true
widget:
- text: Hello!
  example_title: Hello world
  group: Python
---

This model is for debugging. It is randomly initialized using the config from [tiiuae/falcon-mamba-7b](https://huggingface.co/tiiuae/falcon-mamba-7b) but with smaller size. 

Codes:
```python
import os

import torch

from huggingface_hub import create_repo, upload_folder
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    AutoConfig,
    pipeline,
    set_seed,
)

model_id = "tiiuae/falcon-mamba-7b"
repo_id = "yujiepan/falcon-mamba-tiny-random"
save_path = f"/tmp/{repo_id}"
os.system(f'rm -rf {save_path}')

config = AutoConfig.from_pretrained(model_id)
config.use_cache = True
config.num_hidden_layers = 2
config.hidden_size = 8
config.intermediate_size = 16
config.state_size = 8

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
tokenizer.save_pretrained(save_path)

model = AutoModelForCausalLM.from_config(
    config, torch_dtype=torch.bfloat16,
    trust_remote_code=True,
)
model.generation_config = GenerationConfig.from_pretrained(
    model_id,
    trust_remote_code=True,
)

set_seed(42)
num_params = 0
with torch.no_grad():
    for name, p in sorted(model.named_parameters()):
        print(name, p.shape)
        torch.nn.init.uniform_(p, -0.5, 0.5)
        num_params += p.numel()
print("Total number of parameters:", num_params)
model.save_pretrained(save_path)

pipe = pipeline(
    "text-generation",
    model=save_path,
    device="cpu",
    trust_remote_code=True,
    max_new_tokens=20,
)
print(pipe("Hello World!"))

# create_repo(repo_id, exist_ok=True)
# upload_folder(repo_id=repo_id, folder_path=save_path, repo_type='model')
```