Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
inference: true
|
5 |
+
widget:
|
6 |
+
- text: Hello!
|
7 |
+
example_title: Hello world
|
8 |
+
group: Python
|
9 |
+
---
|
10 |
+
|
11 |
+
This model is for debugging. It is randomly initialized with the config from [nvidia/Hymba-1.5B-Instruct](https://huggingface.co/nvidia/Hymba-1.5B-Instruct) but is of smaller size.
|
12 |
+
|
13 |
+
Codes:
|
14 |
+
```python
|
15 |
+
from huggingface_hub import create_repo, upload_folder
|
16 |
+
import os
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import transformers
|
20 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, pipeline, set_seed
|
21 |
+
|
22 |
+
model_id = "nvidia/Hymba-1.5B-Instruct"
|
23 |
+
repo_id = "yujiepan/hymba-tiny-random"
|
24 |
+
save_path = f"/tmp/{repo_id}"
|
25 |
+
|
26 |
+
config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
|
27 |
+
config.conv_dim = {str(i): 32 for i in range(3)}
|
28 |
+
config.hidden_size = 16
|
29 |
+
config.intermediate_size = 32
|
30 |
+
config.num_attention_heads = 2
|
31 |
+
config.num_key_value_heads = 1
|
32 |
+
config.v_head_dim = 8
|
33 |
+
config.num_hidden_layers = 3
|
34 |
+
|
35 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
36 |
+
tokenizer.save_pretrained(save_path)
|
37 |
+
|
38 |
+
model = AutoModelForCausalLM.from_config(
|
39 |
+
config, torch_dtype=torch.bfloat16, trust_remote_code=True,
|
40 |
+
)
|
41 |
+
model.generation_config = GenerationConfig.from_pretrained(
|
42 |
+
model_id, trust_remote_code=True)
|
43 |
+
|
44 |
+
set_seed(42)
|
45 |
+
with torch.no_grad():
|
46 |
+
for _, p in sorted(model.named_parameters()):
|
47 |
+
torch.nn.init.uniform_(p, -0.2, 0.2)
|
48 |
+
|
49 |
+
model.save_pretrained(save_path)
|
50 |
+
|
51 |
+
prompt = 'Hello!'
|
52 |
+
messages = [
|
53 |
+
{"role": "system", "content": "You are a helpful assistant."}
|
54 |
+
]
|
55 |
+
messages.append({"role": "user", "content": prompt})
|
56 |
+
tokenized_chat = tokenizer.apply_chat_template(
|
57 |
+
messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda')
|
58 |
+
outputs = model.cuda().generate(
|
59 |
+
tokenized_chat,
|
60 |
+
max_new_tokens=16,
|
61 |
+
do_sample=False,
|
62 |
+
temperature=0.7,
|
63 |
+
use_cache=True,
|
64 |
+
)
|
65 |
+
input_length = tokenized_chat.shape[1]
|
66 |
+
response = tokenizer.decode(
|
67 |
+
outputs[0][input_length:], skip_special_tokens=True)
|
68 |
+
print(f"Model response: {response}")
|
69 |
+
|
70 |
+
os.system(f"ls -alh {save_path}")
|
71 |
+
create_repo(repo_id, exist_ok=True)
|
72 |
+
upload_folder(repo_id=repo_id, folder_path=save_path)
|
73 |
+
```
|