Upload folder using huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
pipeline_tag: automatic-speech-recognition
|
4 |
+
inference: true
|
5 |
+
---
|
6 |
+
|
7 |
+
This model is for debugging. It is randomly initialized with the config from [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) but is of smaller size.
|
8 |
+
|
9 |
+
Codes:
|
10 |
+
```python
|
11 |
+
import os
|
12 |
+
|
13 |
+
import torch
|
14 |
+
|
15 |
+
from huggingface_hub import create_repo, upload_folder
|
16 |
+
from transformers import (
|
17 |
+
AutoModelForCausalLM,
|
18 |
+
AutoTokenizer,
|
19 |
+
GenerationConfig,
|
20 |
+
AutoConfig,
|
21 |
+
pipeline,
|
22 |
+
set_seed,
|
23 |
+
)
|
24 |
+
import torch
|
25 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, AutoConfig
|
26 |
+
from datasets import load_dataset
|
27 |
+
|
28 |
+
model_id = "openai/whisper-large-v3"
|
29 |
+
repo_id = "yujiepan/whisper-v3-tiny-random"
|
30 |
+
save_path = f"/tmp/{repo_id}"
|
31 |
+
os.system(f'rm -rf {save_path}')
|
32 |
+
os.makedirs(save_path, exist_ok=True)
|
33 |
+
|
34 |
+
device = "cuda"
|
35 |
+
torch_dtype = torch.float16
|
36 |
+
model_id = "openai/whisper-large-v3"
|
37 |
+
|
38 |
+
config = AutoConfig.from_pretrained(model_id)
|
39 |
+
config.num_hidden_layers = 2
|
40 |
+
config.d_model = 8
|
41 |
+
config.decoder_attention_heads = 2
|
42 |
+
config.decoder_ffn_dim = 16
|
43 |
+
config.decoder_layers = 2
|
44 |
+
config.encoder_ffn_dim = 16
|
45 |
+
config.encoder_attention_heads = 2
|
46 |
+
config.encoder_layers = 2
|
47 |
+
|
48 |
+
model = AutoModelForSpeechSeq2Seq.from_config(config)
|
49 |
+
model.to(device).to(torch_dtype)
|
50 |
+
model.generation_config = GenerationConfig.from_pretrained(model_id)
|
51 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
52 |
+
|
53 |
+
set_seed(42)
|
54 |
+
num_params = 0
|
55 |
+
with torch.no_grad():
|
56 |
+
for name, p in sorted(model.named_parameters()):
|
57 |
+
print(name, p.shape)
|
58 |
+
torch.nn.init.uniform_(p, -0.5, 0.5)
|
59 |
+
num_params += p.numel()
|
60 |
+
print("Total number of parameters:", num_params)
|
61 |
+
|
62 |
+
pipe = pipeline(
|
63 |
+
"automatic-speech-recognition",
|
64 |
+
model=model,
|
65 |
+
tokenizer=processor.tokenizer,
|
66 |
+
feature_extractor=processor.feature_extractor,
|
67 |
+
torch_dtype=torch_dtype,
|
68 |
+
device=device,
|
69 |
+
)
|
70 |
+
|
71 |
+
sample = load_dataset(
|
72 |
+
"distil-whisper/librispeech_long", "clean",
|
73 |
+
split="validation",
|
74 |
+
)[0]["audio"]
|
75 |
+
result = pipe(sample, return_timestamps=True)
|
76 |
+
print(result["text"])
|
77 |
+
|
78 |
+
create_repo(repo_id, exist_ok=True)
|
79 |
+
upload_folder(repo_id=repo_id, folder_path=save_path, repo_type='model')
|
80 |
+
```
|