IvanHU commited on
Commit
c1bced4
Β·
verified Β·
1 Parent(s): b721e32

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +189 -1
README.md CHANGED
@@ -35,4 +35,192 @@ language:
35
  - en
36
  - zh
37
  ---
38
- Coming Soon...
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
  - en
36
  - zh
37
  ---
38
+
39
+
40
+ <h4 align="center">
41
+ <p>
42
+ <a href="https://github.com/RUC-GSAI/YuLan-Mini/blob/main/README_zh.md">δΈ­ζ–‡</a> | <b>English</b>
43
+ <p>
44
+ </h4>
45
+
46
+ <div align=center>
47
+ <img src="assets/YuLan-logo.jpg" width="400px">
48
+ <h1>YuLan-Mini: An Open Data-efficient Language Model</h1>
49
+ <a href="https://github.com/RUC-GSAI/YuLan-Mini/blob/main/LICENSE"><img src="https://img.shields.io/badge/License-MIT-blue" alt="license"></a>
50
+ <a href="https://arxiv.org/abs/2412.17743" target="_blank"><img src=https://img.shields.io/badge/arXiv-b5212f.svg?logo=arxiv></a>
51
+ <a href="https://huggingface.co/collections/yulan-team/yulan-mini-676d214b24376739b00d95f3"><img alt="Static Badge" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-blue?color=8A2BE2"></a>
52
+ <a><img src="https://img.shields.io/github/stars/RUC-GSAI/YuLan-Mini"></a>
53
+ </div>
54
+
55
+ YuLan-Mini is a lightweight language model with 2.4 billion parameters. It achieves performance comparable to industry-leading models trained on significantly more data, despite being pre-trained on only 1.08T tokens. The model excels particularly in the domains of **mathematics** and **code**. To facilitate reproducibility, we will open-source the relevant pre-training resources.
56
+
57
+ ---
58
+
59
+ ## Model Downloads πŸ”—
60
+
61
+ > Model weights will be uploaded after final preparations.
62
+
63
+ | Model | Context Length | SFT |
64
+ |---------|----------------|-----|
65
+ | [YuLan-Mini](https://huggingface.co/yulan-team/YuLan-Mini) (Recommended) | 28K | ❎ |
66
+ | [YuLan-Mini-2.4B-4K](https://huggingface.co/yulan-team/YuLan-Mini-Intermediate-4K) | 4K | ❎ |
67
+ | YuLan-Mini-Instruct | Comming soon | βœ… |
68
+
69
+ ---
70
+
71
+ ## Features 🌟
72
+
73
+ <div align=center>
74
+ <img src="assets/main.png">
75
+ </div>
76
+
77
+ Our pre-training methodology improves training efficiency through three key innovations:
78
+
79
+ 1. an elaborately designed **data pipeline** that combines data cleaning with data schedule strategies;
80
+ 2. a systematic **optimization method** that can effectively mitigate training instability;
81
+ 3. an effective **annealing approach** that integrate targeted data selection and long context training.
82
+
83
+
84
+ ---
85
+ ## Behchmarks 🌟
86
+
87
+ | Models | Model Size | # Train Tokens | Context Length | MATH 500 | GSM 8K | Human Eval | MBPP | RACE Middle | RACE High | RULER |
88
+ |:----------------|----------:|--------------:|--------------:|:--------|:------|:----------|:------|:-----------|:---------|:------|
89
+ | MiniCPM | 2.6B | 1.06T | 4K | 15.00 | 53.83 | 50.00* | 47.31 | 56.61 | 44.27 | N/A |
90
+ | Qwen-2 | 1.5B | 7T | 128K | 22.60 | 46.90* | 34.80* | 46.90* | 55.77 | 43.69 | 60.16 |
91
+ | Qwen2.5 | 0.5B | 18T | 128K | 23.60 | 41.60* | 30.50* | 39.30* | 52.36 | 40.31 | 49.23 |
92
+ | Qwen2.5 | 1.5B | 18T | 128K | **45.40** | **68.50\*** | 37.20* | 60.20* | **58.77** | 44.33 | <ins>68.26</ins> |
93
+ | Gemma2 | 2.6B | 2T | 8K | 18.30* | 30.30* | 19.50* | 42.10* | - | - | N/A |
94
+ | StableLM2 | 1.7B | 2T | 4K | - | 20.62 | 8.50* | 17.50 | 56.33 | **45.06** | N/A |
95
+ | SmolLM2 | 1.7B | 11T | 8K | 11.80 | - | 23.35 | 45.00 | 55.77 | 43.06 | N/A |
96
+ | Llama3.2 | 3.2B | 9T | 128K | 7.40 | - | 29.30 | 49.70 | 55.29 | 43.34 | **77.06** |
97
+ | YuLan-Mini | 2.4B | 1.04T | 4K | 32.60 | 66.65 | <ins>61.60</ins> | **66.70** | 55.71 | 43.58 | N/A |
98
+ | YuLan-Mini | 2.4B | 1.08T | 28K | <ins>37.80</ins> | <ins>68.46</ins> | **64.00** | <ins>65.90</ins>| <ins>57.18</ins> | <ins>44.57</ins> | 51.48 |
99
+
100
+
101
+ | Models | LAMBADA | MMLU | CMMLU | CEval | HellaSwag | WinoGrande | StoryCloze | ARC-e | ARC-c |
102
+ |:----------------|:-------|:-----|:-----|:-----|:----------|:-----------|:-----------|:-----|:-----|
103
+ | MiniCPM-2.6B | 61.91 | 53.37 | 48.97 | 48.24 | 67.92 | 65.74 | 78.51 | 55.51 | 43.86 |
104
+ | Qwen2-1.5B | 64.68 | 55.90 | **70.76** | **71.94** | 66.11 | 66.14 | 77.60 | 62.21 | 42.92 |
105
+ | Qwen2.5-0.5B | 52.00 | 47.50 | 52.17 | 54.27 | 50.54 | 55.88 | 71.67 | 56.10 | 39.51 |
106
+ | Qwen2.5-1.5B | 62.12 | <ins>60.71</ins> | <ins>67.82</ins> | <ins>69.05</ins> | 67.18 | 64.48 | 76.80 | **71.51** | <ins>53.41</ins> |
107
+ | Gemma2-2.6B | - | 52.20*| - | 28.00*| <ins>74.60*</ins> | **71.50\*** | - | - | **55.70\***|
108
+ | StableLM2-1.7B | 66.15 | 40.37 | 29.29 | 26.99 | 69.79 | 64.64 | <ins>78.56</ins> | 54.00 | 40.78 |
109
+ | SmolLM2-1.7B | <ins>67.42</ins> | 51.91 | 33.46 | 35.10 | 72.96 | 67.40 | **79.32** | 44.82 | 35.49 |
110
+ | Llama3.2-3B | **69.08** | **63.40** | 44.44 | 44.49 | **75.62** | <ins>67.48</ins> | 76.80 | <ins>70.12</ins> | 48.81 |
111
+ | YuLan-Mini | 64.72 | 51.79 | 48.35 | 51.47 | 68.65 | 67.09 | 76.37 | 69.87 | 50.51 |
112
+ | YuLan-Mini | 65.67 | 49.10 | 45.45 | 48.23 | 67.22 | 67.24 | 75.89 | 67.47 | 49.32 |
113
+
114
+
115
+ ---
116
+
117
+ ## Pre-Training Resources πŸ”§
118
+
119
+ To enhance research transparency and reproducibility, we are open-sourcing relevant [pre-training resources](https://github.com/RUC-GSAI/YuLan-Mini/blob/main/pretrain):
120
+
121
+ <details><summary>1. Pre-training and Evaluation Code</summary>
122
+
123
+ The pre-training and evaluation code will be released in a future update.
124
+ </details>
125
+
126
+
127
+
128
+ <details><summary>2. Intermediate Stage Checkpoints</summary>
129
+ The intermediate stage checkpoints are released in <a href="https://huggingface.co/collections/yulan-team/yulan-mini-676d214b24376739b00d95f3">YuLan-Mini</a>.
130
+
131
+ </details>
132
+
133
+ <details><summary>3. Optimizer States Before Annealing</summary>
134
+
135
+ Optimizer states before annealing will be released in a future update.
136
+ </details>
137
+
138
+
139
+ <details><summary>4. The Used Open-Source Datasets </summary>
140
+
141
+ <a href="https://github.com/RUC-GSAI/YuLan-Mini/blob/main/pretrain/datasets-list.md">Used-Datasets-List</a>
142
+
143
+ </details>
144
+
145
+ <details><summary>5. Data Distribution for every phase</summary>
146
+
147
+ <a href="https://github.com/RUC-GSAI/YuLan-Mini/blob/main/pretrain/final.pdf">High-Definition Image</a>
148
+
149
+ <a href="https://github.com/RUC-GSAI/YuLan-Mini/blob/main/pretrain/final.pdf">
150
+ <div align=center>
151
+ <img src="https://github.com/RUC-GSAI/YuLan-Mini/blob/main/assets/data_distribution_for_every_phase.png">
152
+ </div>
153
+ </a>
154
+
155
+
156
+ </details>
157
+
158
+ <details><summary>6. Synthetic Data</summary>
159
+
160
+ Data cleaning and synthesis pipeline:
161
+ <div align=center>
162
+ <img src="https://github.com/RUC-GSAI/YuLan-Mini/blob/main/assets/data-pipeline.png">
163
+ </div>
164
+
165
+ The synthetic data we are using is released in <a href="https://huggingface.co/collections/yulan-team/yulan-mini-676d214b24376739b00d95f3">YuLan-Mini-Datasets</a>
166
+
167
+ </details>
168
+
169
+ <details><summary>7. Intermediate Optimizer States</summary>
170
+
171
+ Intermediate optimizer states will be released in a future update.
172
+ </details>
173
+
174
+ ---
175
+
176
+ ## Quick Start πŸ’»
177
+
178
+ Below is a simple example for inference using Huggingface:
179
+
180
+ **Huggingface Inference Example**
181
+ ```python
182
+ import torch
183
+ from transformers import AutoTokenizer, AutoModelForCausalLM
184
+
185
+ # Load model and tokenizer
186
+ tokenizer = AutoTokenizer.from_pretrained("yulan-team/YuLan-Mini")
187
+ model = AutoModelForCausalLM.from_pretrained("yulan-team/YuLan-Mini", torch_dtype=torch.bfloat16)
188
+
189
+ # Input text
190
+ input_text = "Renmin University of China is"
191
+ inputs = tokenizer(input_text, return_tensors="pt")
192
+
193
+ # Completion
194
+ output = model.generate(inputs["input_ids"], max_new_tokens=100)
195
+ print(tokenizer.decode(output[0], skip_special_tokens=True))
196
+ ```
197
+
198
+ **vLLM Serve Example**
199
+ ```bash
200
+ vllm serve yulan-team/YuLan-Mini --dtype bfloat16
201
+ ```
202
+
203
+
204
+ ---
205
+
206
+ ## License
207
+
208
+ - The code in this repository is released under the [MIT License](./LICENSE).
209
+ - Policies regarding the use of model weights, intermediate optimizer states, and training data will be announced in future updates.
210
+ - Limitations: Despite our efforts to mitigate safety concerns and encourage the generation of ethical and lawful text, the probabilistic nature of language models may still lead to unexpected outputs. For instance, responses might contain bias, discrimination, or other harmful content. Please refrain from disseminating such content. We are not liable for any consequences arising from the spread of harmful information.
211
+
212
+ ## Citation
213
+
214
+ If you find YuLan-Mini helpful for your research or development, please cite [our technical report](https://arxiv.org/abs/2412.17743):
215
+
216
+ ```
217
+ @misc{hu2024yulanmini,
218
+ title={YuLan-Mini: An Open Data-efficient Language Model},
219
+ author={Yiwen Hu and Huatong Song and Jia Deng and Jiapeng Wang and Jie Chen and Kun Zhou and Yutao Zhu and Jinhao Jiang and Zican Dong and Wayne Xin Zhao and Ji-Rong Wen},
220
+ year={2024},
221
+ eprint={2412.17743},
222
+ archivePrefix={arXiv},
223
+ primaryClass={cs.CL},
224
+ url={https://arxiv.org/abs/2412.17743},
225
+ }
226
+ ```