yumjunstar
commited on
Commit
·
b39c871
1
Parent(s):
0a226a0
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: trocr-small-printedkorean-deleteunusedchar
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# trocr-small-printedkorean-deleteunusedchar
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [team-lucid/trocr-small-korean](https://huggingface.co/team-lucid/trocr-small-korean) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 2.1253
|
21 |
+
- Cer: 0.3884
|
22 |
+
- Wer: 0.4405
|
23 |
+
- Accuracy: 27.0903
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 4e-05
|
43 |
+
- train_batch_size: 128
|
44 |
+
- eval_batch_size: 192
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 10
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Cer | Wer | Accuracy |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:--------:|
|
55 |
+
| 3.5404 | 0.43 | 1000 | 3.5688 | 0.5737 | 0.6446 | 17.7258 |
|
56 |
+
| 3.365 | 0.85 | 2000 | 3.4212 | 0.5664 | 0.6546 | 18.0602 |
|
57 |
+
| 3.266 | 1.28 | 3000 | 3.3538 | 0.5637 | 0.6815 | 18.7291 |
|
58 |
+
| 3.2922 | 1.71 | 4000 | 3.3051 | 0.5613 | 0.7161 | 18.0602 |
|
59 |
+
| 3.1287 | 2.13 | 5000 | 3.2649 | 0.5577 | 0.7164 | 18.7291 |
|
60 |
+
| 3.0906 | 2.56 | 6000 | 3.2016 | 0.5572 | 0.6139 | 18.3946 |
|
61 |
+
| 3.0015 | 2.99 | 7000 | 3.0851 | 0.5530 | 0.6018 | 18.3946 |
|
62 |
+
| 2.7418 | 3.42 | 8000 | 2.8927 | 0.5264 | 0.6052 | 19.3980 |
|
63 |
+
| 2.5107 | 3.84 | 9000 | 2.6466 | 0.4821 | 0.5881 | 19.3980 |
|
64 |
+
| 2.3091 | 4.27 | 10000 | 2.4865 | 0.4545 | 0.5651 | 20.4013 |
|
65 |
+
| 2.1395 | 4.7 | 11000 | 2.3749 | 0.4336 | 0.5323 | 21.7391 |
|
66 |
+
| 2.0453 | 5.12 | 12000 | 2.3070 | 0.4222 | 0.5157 | 21.7391 |
|
67 |
+
| 2.0421 | 5.55 | 13000 | 2.2667 | 0.4143 | 0.5001 | 24.0803 |
|
68 |
+
| 2.0085 | 5.98 | 14000 | 2.2201 | 0.4060 | 0.4809 | 24.0803 |
|
69 |
+
| 1.8766 | 6.4 | 15000 | 2.1988 | 0.4026 | 0.4766 | 23.7458 |
|
70 |
+
| 1.8987 | 6.83 | 16000 | 2.1788 | 0.3969 | 0.4658 | 24.4147 |
|
71 |
+
| 1.8921 | 7.26 | 17000 | 2.1702 | 0.3955 | 0.4581 | 24.4147 |
|
72 |
+
| 1.8253 | 7.69 | 18000 | 2.1554 | 0.3938 | 0.4513 | 26.7559 |
|
73 |
+
| 1.8281 | 8.11 | 19000 | 2.1481 | 0.3925 | 0.4534 | 26.0870 |
|
74 |
+
| 1.8751 | 8.54 | 20000 | 2.1419 | 0.3905 | 0.4500 | 26.0870 |
|
75 |
+
| 1.8226 | 8.97 | 21000 | 2.1317 | 0.3905 | 0.4439 | 26.7559 |
|
76 |
+
| 1.813 | 9.39 | 22000 | 2.1285 | 0.3895 | 0.4407 | 26.0870 |
|
77 |
+
| 1.7472 | 9.82 | 23000 | 2.1253 | 0.3884 | 0.4405 | 27.0903 |
|
78 |
+
|
79 |
+
|
80 |
+
### Framework versions
|
81 |
+
|
82 |
+
- Transformers 4.28.0
|
83 |
+
- Pytorch 1.13.1+cu116
|
84 |
+
- Datasets 2.14.4
|
85 |
+
- Tokenizers 0.13.3
|