File size: 1,783 Bytes
527368b
 
 
 
 
 
5362366
527368b
 
 
 
 
5362366
527368b
 
 
 
 
 
 
 
 
5362366
 
527368b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5362366
527368b
 
 
 
 
 
5362366
 
 
 
 
527368b
 
 
 
 
 
 
5362366
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
language:
- nan
license: apache-2.0
base_model: openai/whisper-small
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
model-index:
- name: Whisper Small nan-tw - Taiwanese
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small nan-tw - Taiwanese

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3647
- Cer: 28.4585

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.6816        | 0.65  | 1000 | 0.6212          | 43.9508 |
| 0.3575        | 1.29  | 2000 | 0.4729          | 34.6632 |
| 0.2899        | 1.94  | 3000 | 0.4043          | 31.3601 |
| 0.1543        | 2.58  | 4000 | 0.3714          | 28.9896 |
| 0.087         | 3.23  | 5000 | 0.3647          | 28.4585 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2