File size: 2,154 Bytes
527368b
 
 
06b7792
527368b
 
 
 
 
 
 
 
06b7792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
527368b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06b7792
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
language:
- nan
- zh
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_16_1
model-index:
- name: Whisper Small nan-tw - Taiwanese
  results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_16_1 nan-tw
          type: mozilla-foundation/common_voice_16_0
          config: nan-tw
          split: test
          args: nan-tw
        metrics:
          - name: CER
            type: cer
            value: 29.831606
metrics:
- cer
pipeline_tag: automatic-speech-recognition
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small nan-tw - Taiwanese

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 16.1 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3880
- Cer: 29.8316

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Cer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.6846        | 0.65  | 1000 | 0.6206          | 43.9508 |
| 0.3563        | 1.29  | 2000 | 0.4756          | 35.1554 |
| 0.29          | 1.94  | 3000 | 0.4050          | 31.3860 |
| 0.1704        | 2.58  | 4000 | 0.3880          | 29.8316 |


### Framework versions

- Transformers 4.38.2
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2