File size: 48,015 Bytes
63bd700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
import math
from typing import Any, Dict, Optional, List, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F


from einops import rearrange

from transformers.modeling_outputs import SequenceClassifierOutputWithPast, CausalLMOutputWithPast, BaseModelOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from transformers.cache_utils import Cache, DynamicCache

from .triton_flash_blocksparse_attn import BlockSparseParams
from .triton_blocksparse_attention_layer import BlockSparseAttentionLayer
from .positional_embedding import RotaryEmbedding

from .configuration_phi3_small import Phi3SmallConfig

# Flash Attention Related Imports
is_flash_attention_available = False
try:
    import flash_attn
    if int(flash_attn.__version__.split('.')[0]) < 2:
        from flash_attn.flash_attn_interface import (
            flash_attn_func,
            flash_attn_unpadded_kvpacked_func as flash_attn_varlen_kvpacked_func,
            )

        # rename `max_seqlen`
        def flash_attn_varlen_qkvpacked_func(qkv, cu_seqlens, max_seqlen, dropout_p=0.0, **kwargs):
            return flash_attn_func(qkv, cu_seqlens, dropout_p=dropout_p, max_s=max_seqlen, **kwargs)

    else:
        from flash_attn.flash_attn_interface import (
            flash_attn_varlen_kvpacked_func,
        )
        from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
    is_flash_attention_available = True
except ImportError:
    pass

logger = logging.get_logger(__name__)

LegacyCache = Tuple[Tuple[torch.FloatTensor]]

# Taken from https://github.com/allenai/allennlp/blob/main/allennlp/nn/util.py
def info_value_of_dtype(dtype: torch.dtype):
    """
    Returns the `finfo` or `iinfo` object of a given PyTorch data type. Does not allow torch.bool.
    """
    if dtype == torch.bool:
        raise TypeError("Does not support torch.bool")
    elif dtype.is_floating_point:
        return torch.finfo(dtype)
    else:
        return torch.iinfo(dtype)
 
 
# Taken from https://github.com/allenai/allennlp/blob/main/allennlp/nn/util.py
def min_value_of_dtype(dtype: torch.dtype):
    """
    Returns the minimum value of a given PyTorch data type. Does not allow torch.bool.
    """
    return info_value_of_dtype(dtype).min

# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
    seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
    indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
    max_seqlen_in_batch = seqlens_in_batch.max().item()
    cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
    return (
        indices,
        cu_seqlens,
        max_seqlen_in_batch,
    )


@torch.jit.script
def quick_gelu(x):
    return x * torch.sigmoid(1.702 * x)


@torch.jit.script
def gegelu(input, limit: Optional[float] = None):
    a_gelu, a_linear = input[..., ::2], input[..., 1::2]
    if limit is not None:
        a_gelu = torch.where(
            torch.isinf(a_gelu), a_gelu, a_gelu.clamp(min=None, max=limit)
        )
        a_linear = torch.where(
            torch.isinf(a_linear), a_linear, a_linear.clamp(min=-limit, max=limit)
        )
    out_gelu = quick_gelu(a_gelu)
    return out_gelu * (a_linear + 1)

def collapse_first_n_dims(x: torch.Tensor, n: int) -> torch.Tensor:
    """
    Collapse the first `n` dimensions of a tensor into a single dimension.

    Args:
        x (torch.Tensor): The input tensor.
        n (int): The number of dimensions to collapse.

    Returns:
        torch.Tensor: The output tensor.
    """
    return x.view(-1, *x.shape[n:])

def pad_tensor_to_next_mult_of(
    tensor: torch.Tensor,
    dim: int,
    n: int,
) -> Tuple[torch.Tensor, int]:
    """
    Pads a tensor along a specified dimension to the next multiple of a given number.

    Args:
        tensor (torch.Tensor): The input tensor.
        dim (int): The dimension along which to pad the tensor.
        n (int): The number to pad the tensor to the next multiple of.

    Returns:
        Tuple[torch.Tensor, int]: A tuple containing the padded tensor and the amount of padding added.
    """
    residual = tensor.size(dim) % n
    if residual == 0:
        return tensor, 0
    padding = n - residual
    padding_tensor = torch.zeros((*tensor.size()[:dim], padding, *tensor.size()[dim + 1:]), device=tensor.device, dtype=tensor.dtype)
    return torch.cat([tensor, padding_tensor], dim=dim), padding

def strip_padding_from_tensor(
    tensor: torch.Tensor,
    dim: int,
    residual: int,
) -> torch.Tensor:
    """
    Removes padding from a tensor along a specified dimension.

    Args:
        tensor (torch.Tensor): The input tensor.
        dim (int): The dimension along which to remove padding.
        residual (int): The amount of padding to remove.

    Returns:
        torch.Tensor: The tensor with padding removed along the specified dimension.
    """
    return torch.narrow(tensor, dim, 0, tensor.size(dim) - residual)

class Phi3SmallMLP(nn.Module):
    def __init__(self, config: Phi3SmallConfig):
        super().__init__()
        self.config = config
        assert self.config.hidden_act == "gegelu", "Only `gegelu` is supported for the Phi-3-small model .."
        self.hidden_size = config.hidden_size
        self.gegelu_limit = config.gegelu_limit
        self.intermediate_size = config.intermediate_size

        self.up_proj = nn.Linear(self.hidden_size, 2 * self.intermediate_size)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size)
        self.dropout = nn.Dropout(config.ffn_dropout_prob)
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.dropout(
            self.down_proj(
                gegelu(self.up_proj(x), limit=self.gegelu_limit)
            )
        )


class Phi3SmallSelfAttention(nn.Module):
    def __init__(self, config: Phi3SmallConfig, layer_idx: Optional[int] = None) -> None:
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        if layer_idx is None:
            logger.warning_once(
                f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
                "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
                "when creating this class."
            )
        
        self.hidden_size = config.hidden_size
        # Number of Query Heads
        self.num_heads = config.num_attention_heads
        self.head_dim = self.hidden_size // self.num_heads
        # Number of Key Value Heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_q_per_kv = self.num_heads // self.num_key_value_heads
        self.max_position_embeddings = config.max_position_embeddings
        self.rope_embedding_base = config.rope_embedding_base
        self.rope_position_scale = config.rope_position_scale
        self.is_causal = True

        self.attention_dropout_rate = config.attention_dropout_prob

        norm_factor = None
        if config.mup_use_scaling:
            norm_factor = self.head_dim / config.mup_attn_multiplier
        else:
            norm_factor = math.sqrt(self.head_dim)
        self.softmax_scale = 1.0 / norm_factor

        self.query_key_value = nn.Linear(self.hidden_size, (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim)
        self.dense = nn.Linear(self.hidden_size, self.hidden_size)

        self.blocksparse_params = None
        # layer_idx is 0 indexed because that's what the KV Cache expects.
        if self.config.dense_attention_every_n_layers and ((self.layer_idx + 1) % self.config.dense_attention_every_n_layers == 0):
            logger.info(
                f"Layer {layer_idx + 1} is using dense attention since it is divisible by "
                f"{self.config.dense_attention_every_n_layers}"
            )
            assert is_flash_attention_available, "Flash Attention is not available, but is needed for dense attention"
        else:
            # BlockSparse related Parameters
            self.blocksparse_params = BlockSparseParams.from_config(config)

        if self.blocksparse:
            active_head_range = None
            """
                ... note(bapatra)::

                    In case of tensor parallelism and while using the heterogeneous head patterns,
                    the active head range needs to be modified based on the tensor parallel rank
                    and the tensor parallel world size.

                    This is because in the case of heterogeneous head patterns, the kernel needs to know
                    which head is on which device, so that it can pick the corresponding blocksparse head
                    pattern correctly.

                    Example:
                    ```python

                        if not self.blocksparse_params.homo_head_pattern:
                            tp_rank = torch.distributed.get_rank() % tp_world_size
                            num_heads_per_partition = num_heads // tp_world_size
                            active_head_range = (tp_rank * num_heads_per_partition, (tp_rank + 1) * num_heads_per_partition)

                    ```

            """
            
            self._blocksparse_layer = BlockSparseAttentionLayer(
                n_heads=self.num_heads,
                max_seq_len=self.max_position_embeddings,
                sparse_block_size=self.blocksparse_params.block_size,
                local_blocks=self.blocksparse_params.num_local_blocks,
                vert_stride=self.blocksparse_params.vert_stride,
                kernel_block_size=self.blocksparse_params.kernel_block_size,
                homo_head=self.blocksparse_params.homo_head_pattern,
                active_head_range=active_head_range,
            )
        self.rotary_emb = RotaryEmbedding.from_config(config)


    @property
    def blocksparse(self):
        return self.blocksparse_params is not None

    def _split_heads(self, mixed_x_layer: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        bs, sq, _ = mixed_x_layer.size()
        r"""
        The main idea is that we group tensors as
        [bs, sq, (q00, q01, ... q0m, k0, v0), (q10, q11, ... q1m, k1, v1), ... (qn0, qn1, ... qnm, kn, vn)]
        That ways, when the MP column sharding happens, this tensor will be sharded keeping all the
        queries and keys intact. In order to get the correct qkv, we first break into groups, and then
        index into the groups.
        """

        intermediate_shape = (bs, sq, -1, (self.num_q_per_kv + 2), self.head_dim)
        mixed_x_layer = mixed_x_layer.view(*intermediate_shape)
        q = mixed_x_layer[:, :, :, :-2]
        k = mixed_x_layer[:, :, :, [-2]]
        v = mixed_x_layer[:, :, :, [-1]]
        q, k, v = [
            rearrange(
                x,
                "bs sq group nh hn -> bs sq (group nh) hn"
            ) for x in (q, k, v)
        ]
        return q, k, v

    # Copied from transformers.models.mistral.modeling_mistral.MistralFlashAttention2._unpad_input
    def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
        batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape


        indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)

        key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
        value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)

        if query_length == kv_seq_len:
            query_layer = index_first_axis(
                query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
            )
            cu_seqlens_q = cu_seqlens_k
            max_seqlen_in_batch_q = max_seqlen_in_batch_k
            indices_q = indices_k
        elif query_length == 1:
            max_seqlen_in_batch_q = 1
            cu_seqlens_q = torch.arange(
                batch_size + 1, dtype=torch.int32, device=query_layer.device
            )  # There is a memcpy here, that is very bad.
            indices_q = cu_seqlens_q[:-1]
            query_layer = query_layer.squeeze(1)
        else:
            # The -q_len: slice assumes left padding.
            attention_mask = attention_mask[:, -query_length:]
            query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)

        return (
            query_layer,
            key_layer,
            value_layer,
            indices_q,
            (cu_seqlens_q, cu_seqlens_k),
            (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
        )

    def _apply_blocksparse_attention(
        self,
        q: torch.Tensor,
        k: torch.Tensor,
        v: torch.Tensor,
        attention_mask: Optional[torch.LongTensor],
        return_attention_probs: bool = False,
    ) -> torch.Tensor:
        """
        Applies blocksparse attention to the input tensors.

        Args:
            q (torch.Tensor): The query tensor of shape (bs, nqp, seq_len, hn).
            k (torch.Tensor): The key tensor of shape (bs, nkp, seq_len, hn).
            v (torch.Tensor): The value tensor of shape (bs, nkp, seq_len, hn).
            attention_mask (Optional[torch.LongTensor]): The attention mask tensor of shape (bs, seq_len).
            return_attention_probs (bool, optional): Whether to return attention probabilities. Defaults to False.

        Returns:
            torch.Tensor: The context layer tensor of shape (bs, nqp, seq_len, hn).
        """
        assert not return_attention_probs, "return_attention_probs is not supported for blocksparse attention"
        q, k, v = q.contiguous(), k.contiguous(), v.contiguous()
        # shape: (bs, nqp, seq_len, hn)
        if torch.is_grad_enabled():
            # Training or non-batched inference
            context_layer = self._blocksparse_layer(
                q=q, k=k, v=v, sm_scale=self.softmax_scale
            )
        elif attention_mask is None:
            if q.size(0) != 1:
                logger.warning_once(
                    "You are attempting to do batched inference without passing the attention mask.\n"
                    "This is okay if you are running loglikelihood requests. However, if you want to do generation, "
                    "this probably won't work as expected. Please pass the attention mask to the forward function."
                )
            context_layer = self._blocksparse_layer(
                q=q, k=k, v=v, sm_scale=self.softmax_scale
            )
        else:
            """
                Shapes of tensors are as follows:
                    q: (bs, nqp, seq_len, hdim)
                    k: (bs, nkp, seq_len, hdim)
                    v: (bs, nkp, seq_len, hdim)
                We first need to transpose the shapes to fit what the
                kernel needs, and the reinvert it back at the end of the operations
            """
            assert attention_mask.ndim == 2, "The kernel, like flash-attention-2, only supports 2d attention masks ..."
            left_paddings = attention_mask.shape[1] - attention_mask.sum(dim=-1)
            # shape: (bs, seq_len, nqp, hdim)
            q = q.transpose(1, 2).contiguous()
            # shape: (bs, seq_len, nkp, hdim)
            k = k.transpose(1, 2).contiguous()
            # shape: (bs, seq_len, nkp, hdim)
            v = v.transpose(1, 2).contiguous()
            context_layer = self._blocksparse_layer(
                q=q, k=k, v=v, sm_scale=self.softmax_scale, left_paddings=left_paddings.to(torch.int32)
            )
            # shape: (bs, nqp, seq_len, hdim)
            context_layer = context_layer.transpose(1, 2).contiguous()
        return context_layer

    def _apply_dense_attention(
        self,
        q: torch.Tensor,
        k: torch.Tensor,
        v: torch.Tensor,
        attention_mask: torch.Tensor,
        return_attention_probs: bool = False,
    ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
        """
        Apply dense attention

        Args:
            q (torch.Tensor):
                The query tensor, shape: (bs, num_query_heads, seq_len, head_size)
            k (torch.Tensor):
                The key tensor, shape: (bs, num_query_heads, seq_len, head_size)
            v (torch.Tensor):
                The value tensor, shape: (bs, num_query_heads, seq_len, head_size)

            return_attention_probs (bool, optional):
                Return the attention probabilities. Defaults to False.

        Returns:
            Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
                Return the output of the attention aggregation. If `return_attention_probs` is True, then
                also return the attention probabilities

        .. note::
            Right now, am assuming the expansion for the query key values is already done
            outside. But ideally, since Flash attention handles the GQA correctly, we can
            avoid doing that.

        """
        attention_dropout_prob = self.attention_dropout_rate if self.training else 0.0
        # Get into the correct shape for the Flash Attention API
        # shape: (bs, seq_len, nqp, hn)
        q = q.transpose(1, 2).contiguous()
        query_length = q.size(1)
        # shape: (bs, seq_len, npq, hn)
        k = k.transpose(1, 2).contiguous()
        # shape: (bs, seq_len, npq, hn)
        v = v.transpose(1, 2).contiguous()

        if attention_mask is not None:
            causal = q.size(2) == k.size(2)
            batch_size = q.shape[0]
            flat_q, flat_k, flat_v, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
                q, k, v, attention_mask, query_length
            )
            cu_seqlens_q, cu_seqlens_k = cu_seq_lens
            max_seqlen_q, max_seqlen_k = max_seq_lens
            flat_kv = torch.cat((flat_k.unsqueeze(1), flat_v.unsqueeze(1)), dim=1)
            attn_output_unpad = flash_attn_varlen_kvpacked_func(
                q=flat_q,
                kv=flat_kv,
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_k,
                max_seqlen_q=max_seqlen_q,
                max_seqlen_k=max_seqlen_k,
                dropout_p=attention_dropout_prob,
                softmax_scale=self.softmax_scale,
                causal=causal,
                return_attn_probs=return_attention_probs
            )
            attention_output = pad_input(
                attn_output_unpad, indices_q, batch_size, query_length
            )
        else:
            kv = torch.cat((k.unsqueeze(2), v.unsqueeze(2)), dim=2)
            cu_seqlens_q = torch.arange(
                0, (q.size(0) + 1), device=q.device, dtype=torch.int32
            ) * q.size(1)
            cu_seqlens_kv = torch.arange(
                0, (kv.size(0) + 1), device=kv.device, dtype=torch.int32
            ) * kv.size(1)
            max_seqlen_q = q.size(1)
            max_seqlen_k = kv.size(1)
            attention_output = flash_attn_varlen_kvpacked_func(
                q=collapse_first_n_dims(q, 2),
                kv=collapse_first_n_dims(kv, 2),
                cu_seqlens_q=cu_seqlens_q,
                cu_seqlens_k=cu_seqlens_kv,
                max_seqlen_q=max_seqlen_q,
                max_seqlen_k=max_seqlen_k,
                dropout_p=attention_dropout_prob,
                softmax_scale=self.softmax_scale,
                causal=q.size(1) == kv.size(1),
                return_attn_probs=return_attention_probs
            )
        if return_attention_probs:
            (context_layer, attn_probs) = attention_output
            context_layer = context_layer.view(q.size(0), q.size(1), -1, q.size(3)).transpose(1, 2).contiguous()
            return (context_layer, attn_probs)
        context_layer = attention_output
        context_layer = context_layer.view(q.size(0), q.size(1), -1, q.size(3)).transpose(1, 2).contiguous()
        return context_layer

    
    def expand_kv_to_q_size(self, kv: torch.Tensor, num_q_per_kv: int) -> torch.Tensor:
        """
        Expand the key-value tensor to match the size of the query tensor.

        Args:
            kv (torch.Tensor): The key-value tensor of shape (bsz, nkp, 2, seq_len, hdim).
            num_q_per_kv (int): The number of queries per key-value.

        Returns:
            torch.Tensor: The expanded key-value tensor of shape (bsz, nqp, 2, seq_len, hdim).
            Where nqp = num_q_per_kv * nkp

        .. note(bapatra)::
            Right now, I am using a repeat_interleave to expand the kv to the size of q.
            This incurs a memory penalty, since the tensors are actually copied.
            TODO: If this does yield benefits, then potentially we can use the re-written
            flash attention kernel that can handle GQA.
        """

        repeats = torch.tensor([num_q_per_kv] * kv.size(1)).to(kv.device)
        total = repeats.sum()
        expanded_kv = torch.repeat_interleave(
            kv,
            repeats=repeats,
            dim=1,
            output_size=total
        )
        return expanded_kv

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        output_attentions: bool = False,
        use_cache: bool = False,
        **kwargs,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        """
        The forward function of the Self Attention Layer.

        Args:
            hidden_states (torch.Tensor):
                The input tensor of shape (bs, q_len, h).
            attention_mask (Optional[torch.Tensor], optional):
                The attention mask tensor of shape (bs, seq_len). This is the 2D attention mask tensor as is standard in the flash-attention
                kernel.
                Defaults to None.
            position_ids (Optional[torch.LongTensor], optional):
                The position ids tensor of shape (bs, q_len). Defaults to None. Unused by the function.
            past_key_value (Optional[Cache], optional): 
                The previous kv cache values. Defaults to None.
            output_attentions (bool, optional): 
                Whether to return the attention scores. Defaults to False.
                    .. note::
                        For the blocksparse attention kernel, we do not support returning the attention scores.
            use_cache (bool, optional): 
                Whether to use the cache for storing the kv. Defaults to False.

        Returns:
            Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
                The output tensor of shape (bs, q_len, h), 
                the attention scores tensor of shape (bs, nqp, q_len, seq_len) if `output_attentions` is True, 
                and the updated cache values if `use_cache` is True.
        
        Notations:
        ------------
            bs: batch size
            sq_len: sequence length of the entire sequence
            q_len: sequence length of the query
            cache_sq: sequence length in the cache
                If there is no cache then cache_sq = 0
                and sq_len = q_len
                otherwise sq_len = q_len + cache_sq
            h: hidden size
            nq: number of query heads
            nkv: number of key heads
            hn: hidden size per head
                hn = h // nq
            nqp: number of query heads (per MP partition)
                nqp = nq // (num mp partitions)
            nkvp: number of key-value heads (per MP partition)
                nkvp = nk // (num mp partitions)

        """
        # shape: (bs, q_len, h)
        bsz, q_len, _ = hidden_states.size()

        # shape: (bs, q_len, (nqp + 2 * nkvp) * hn)
        mixed_x_layer = self.query_key_value(hidden_states)
        # shape: (bs, q_len, nqp, hn), shape: (bs, q_len, nkvp, hn), shape: (bs, q_len, nkvp, hn)
        q, k, v = self._split_heads(mixed_x_layer)

        # shape: (bs, qnp, q_len, hn)
        query_states = q.permute(0, 2, 1, 3).contiguous()
        # shape: (bs, nkvp, q_len, hn)
        key_states = k.permute(0, 2, 1, 3).contiguous()
        # shape: (bs, nkvp, q_len, hn)
        value_states = v.permute(0, 2, 1, 3).contiguous()

        kv_seq_len = key_states.shape[-2]
        if past_key_values is not None:
            if self.layer_idx is None:
                raise ValueError(
                    f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
                    "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
                    "with a layer index."
                )
            if self.rotary_emb is not None:
                seqlen_offset = past_key_values.get_usable_length(kv_seq_len, layer_idx=self.layer_idx)
                # shape: (bs, nqp, q_len, hn), shape: (bs, nkvp, q_len, hn)
                query_states, key_states = self.rotary_emb(
                    query_states, key_states, seq_dimension=2, seqlen_offset=seqlen_offset
                )
                key_states, value_states = past_key_values.update(key_states=key_states, value_states=value_states, layer_idx=self.layer_idx)
        else:
            # In this case seq_len = q_len and cache_sq = 0
            if self.rotary_emb is not None:
                # shape: (bs, nqp, seq_len, hn), shape: (bs, nkvp, seq_len, hn)
                query_states, key_states = self.rotary_emb(query_states, key_states, seq_dimension=2)

        # shape: (bs, nkvp, 2, seq_len, hn)
        kv_states = torch.cat((key_states.unsqueeze(2), value_states.unsqueeze(2)), dim=2)
        # shape: (bs, nqp, 2, seq_len, hn)
        expanded_kv_states = self.expand_kv_to_q_size(kv_states, num_q_per_kv=self.num_q_per_kv)
        # shape: (bs, nqp, seq_len, hn), shape: (bs, nqp, seq_len, hn)
        expanded_key_states, expanded_value_states = expanded_kv_states[:, :, 0], expanded_kv_states[:, :, 1]
        if self.blocksparse:
            attn_function_output = self._apply_blocksparse_attention(
                q=query_states,
                k=expanded_key_states,
                v=expanded_value_states,
                attention_mask=attention_mask,
                return_attention_probs=output_attentions
            )
        else:
            attn_function_output = self._apply_dense_attention(
                q=query_states,
                k=expanded_key_states,
                v=expanded_value_states,
                attention_mask=attention_mask,
                return_attention_probs=output_attentions
            )

        attn_weights = None
        if output_attentions:
            attn_output, attn_weights = attn_function_output
        else:
            # shape: (bs, nqp, seq_len, hn)
            attn_output = attn_function_output
        # shape: (bs, seq_len, nqp, hn)
        attn_output = attn_output.transpose(1, 2).contiguous()

        # shape: (bs, seq_len, h)
        attn_output = attn_output.view(bsz, q_len, -1)
        attn_output = self.dense(attn_output)
        return attn_output, attn_weights, past_key_values
        

class Phi3SmallDecoderLayer(nn.Module):
    def __init__(self, config: Phi3SmallConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = Phi3SmallSelfAttention(config, layer_idx)
        self.mlp = Phi3SmallMLP(config)

        self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
        self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
    
    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        output_attentions: Optional[bool] = None,
        use_cache: Optional[bool] = None,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Cache]]:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights, present_key_values = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            output_attentions=output_attentions,
            use_cache=use_cache,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (self_attn_weights,)

        if use_cache:
            outputs += (present_key_values,)

        return outputs



class Phi3SmallPreTrainedModel(PreTrainedModel):
    config_class = Phi3SmallConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["Phi3SmallDecoderLayer"]
    skip_keys_device_placement = "past_key_values"
    _supports_flash_attn_2 = True
    _supports_sdpa = False
    _supports_cache_class = True

    def _init_weights(self, module: nn.Module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        
        # The output projection on the decoder attention layer as well as the down_proj in the MLP are scaled
        # differently (dubbed `output_layer_init_method` in the Megatron code). This is replicated here
        for name, p in module.named_parameters():
            if any(x in name for x in ("c_proj.weight", "down_proj.weight", "o_proj.weight")):
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.num_hidden_layers)))


class Phi3SmallModel(Phi3SmallPreTrainedModel):

    def __init__(self, config):
        super().__init__(config)
        self.config = config

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)

        # Embedding Dropout
        self.embedding_dropout = nn.Dropout(config.embedding_dropout_prob)
        
        # MuP Embedding scaling
        self.mup_embedding_multiplier = config.mup_embedding_multiplier

        self.layers = nn.ModuleList([Phi3SmallDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])

        self.final_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)

        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()
    
    def get_input_embeddings(self):
        return self.embed_tokens
    
    def set_input_embeddings(self, value):
        self.embed_tokens = value
    
    @property
    def pad_sequence_to_multiple_of_64(self):
        # We only need to do this for the backward pass. So only required
        # when we are in the context of generating gradients
        return self.config.pad_sequence_to_multiple_of_64 and torch.is_grad_enabled()

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Union[Cache, LegacyCache]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPast]:
        
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            batch_size, seq_length = input_ids.shape
        elif inputs_embeds is not None:
            batch_size, seq_length, _ = inputs_embeds.shape
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False
        
        past_key_values_length = 0

        if use_cache:
            use_legacy_cache = not isinstance(past_key_values, Cache)
            if use_legacy_cache:
                past_key_values = DynamicCache.from_legacy_cache(past_key_values)
            past_key_values_length = past_key_values.get_usable_length(seq_length)
        
        if position_ids is None:
            device = input_ids.device if input_ids is not None else inputs_embeds.device
            position_ids = torch.arange(
                past_key_values_length, past_key_values_length + seq_length, dtype=torch.long, device=device
            )
            position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
        else:
            position_ids = position_ids.view(-1, seq_length).long()
        
        if attention_mask is not None:
            if batch_size <= 0:
                raise ValueError("batch_size has to be defined and > 0")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)
        inputs_embeds = self.embedding_dropout(inputs_embeds)

        if self.mup_embedding_multiplier is not None and self.mup_embedding_multiplier > 0.0:
            inputs_embeds = inputs_embeds * self.mup_embedding_multiplier
        
        residual = 0
        if self.pad_sequence_to_multiple_of_64:
            # note(bapatra): Since we don't particularly use the position_ids and the attention mask
            # we don't need to pad them
            inputs_embeds, residual = pad_tensor_to_next_mult_of(tensor=inputs_embeds, dim=1, n=64)

        hidden_states = inputs_embeds

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None
        next_decoder_cache = None

        for decoder_layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)
            
            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    decoder_layer.__call__,
                    hidden_states,
                    attention_mask,
                    position_ids,
                    past_key_values,
                    output_attentions,
                    use_cache,
                )
            else:
                layer_outputs = decoder_layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    position_ids=position_ids,
                    past_key_values=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache,
                )
            hidden_states = layer_outputs[0]

            if use_cache:
                # Following the Mistral schema for layer return values
                next_decoder_cache = layer_outputs[2 if output_attentions else 1]
            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.final_layernorm(hidden_states)

        if residual > 0:
            hidden_states = strip_padding_from_tensor(tensor=hidden_states, dim=1, residual=residual)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)
        
        next_cache = None
        if use_cache:
            next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
        
        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )


class Phi3SmallForCausalLM(Phi3SmallPreTrainedModel):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = Phi3SmallModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, self.vocab_size, bias=False)
        self.mup_width_multiplier = config.mup_width_multiplier

        # Create the mask for the dummy tokens in the vocabulary
        dummy_token_indices = config.dummy_token_indices
        dummy_tokens_mask = torch.zeros(self.vocab_size).bool()
        dummy_tokens_mask[dummy_token_indices] = True
        # shape: (vocab_size,)
        self.register_buffer("dummy_tokens_mask", dummy_tokens_mask, persistent=False)

        # Initialize weights and apply final processing
        self.post_init()
    
    def get_input_embeddings(self):
        return self.model.embed_tokens
    
    def set_input_embeddings(self, value):
        self.model.embed_tokens = value
    
    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, value):
        self.lm_head = value
    
    def set_decoder(self, decoder):
        self.model = decoder
    
    def get_decoder(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,   
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_head(hidden_states)
        logits = logits.float()
        if self.mup_width_multiplier:
            logits = logits / self.mup_width_multiplier
        logits = logits.masked_fill(self.dummy_tokens_mask, min_value_of_dtype(logits.dtype))

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = nn.CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
    
    def prepare_inputs_for_generation(
        self, 
        input_ids: torch.LongTensor,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        **kwargs
    ) -> Dict[str, Any]:
        # only last token for inputs_ids if past is defined in kwargs
        if past_key_values:
            input_ids = input_ids[:, -1].unsqueeze(-1)

        position_ids = kwargs.get("position_ids", None)

        if attention_mask is not None and position_ids is None:
            # create position_ids on the fly for batch generation
            position_ids = attention_mask.long().cumsum(-1) - 1
            position_ids.masked_fill_(attention_mask == 0, 1)
            if past_key_values:
                position_ids = position_ids[:, -1].unsqueeze(-1)
        else:
            position_ids = None

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "position_ids": position_ids,
                "attention_mask": attention_mask,
            }
        )
        return model_inputs


# Copied from transformers.models.mistral.modeling_mistral.MistralForSequenceClassification with Mistral -> Phi3Small
class Phi3SmallForSequenceClassification(Phi3SmallPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
        self.num_labels = config.num_labels
        self.model = Phi3SmallModel(config)
        self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)

        # Initialize weights and apply final processing
        self.post_init()
    
    def get_input_embeddings(self):
        return self.model.embed_tokens
    
    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    
    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.model(
            input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size = input_ids.shape[0]
        else:
            batch_size = inputs_embeds.shape[0]

        if self.config.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
        if self.config.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
                sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
                sequence_lengths = sequence_lengths % input_ids.shape[-1]
                sequence_lengths = sequence_lengths.to(logits.device)
            else:
                sequence_lengths = -1

        pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]

        loss = None
        if labels is not None:
            labels = labels.to(logits.device)
            if self.config.problem_type is None:
                if self.num_labels == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = nn.MSELoss()
                if self.num_labels == 1:
                    loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(pooled_logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = nn.BCEWithLogitsLoss()
                loss = loss_fct(pooled_logits, labels)
        if not return_dict:
            output = (pooled_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutputWithPast(
            loss=loss,
            logits=pooled_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
        )