zaydzuhri's picture
Training in progress, step 2500
061483f verified
# -*- coding: utf-8 -*-
from dataclasses import dataclass
from typing import Any, Dict, List, Union
import numpy as np
import torch
from transformers import PreTrainedTokenizer
@dataclass
class DataCollatorForLanguageModeling:
"""
Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they
are not all of the same length.
Args:
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]):
The tokenizer used for encoding the data.
varlen (`bool`):
Whether to return sequences with variable lengths.
If `True`, the offsets indicating the start and end of each sequence will be returned.
For example, if the sequence lengths are `[4, 8, 12]`,
the returned `input_ids` will be a long flattened tensor of shape `[1, 24]`, with `offsets` being `[0, 4, 12, 24]`.
If `False`, the `input_ids` with shape `[batch_size, seq_len]` will be returned directly.
return_tensors (`str`):
The type of Tensor to return. Allowable values are "pt".
<Tip>
For best performance, this data collator should be used with a dataset having items that are dictionaries or
BatchEncoding, with the `"special_tokens_mask"` key, as returned by a [`PreTrainedTokenizer`] or a
[`PreTrainedTokenizerFast`] with the argument `return_special_tokens_mask=True`.
</Tip>"""
tokenizer: PreTrainedTokenizer
varlen: bool = False
return_tensors: str = "pt"
def __call__(
self,
examples: List[Union[List[int], Dict[str, Any]]]
) -> Dict[str, Any]:
if not isinstance(examples[0], Dict):
examples = [{'input_ids': x} for x in examples]
if isinstance(examples[0]['input_ids'], List):
examples = [{'input_ids': torch.tensor(x['input_ids'], dtype=torch.long)} for x in examples]
elif isinstance(examples[0]['input_ids'], np.ndarray):
examples = [{'input_ids': torch.from_numpy(x['input_ids'])} for x in examples]
if not self.varlen:
length_of_first = examples[0]['input_ids'].size(0)
# Check if padding is necessary.
if all(x['input_ids'].size(0) == length_of_first for x in examples):
batch = {'input_ids': torch.stack([x['input_ids'] for x in examples], dim=0)}
else:
# If yes, check if we have a `pad_token`.
if self.tokenizer._pad_token is None:
raise ValueError(
f"You are attempting to pad samples but the tokenizer you are using "
f"({self.tokenizer.__class__.__name__}) does not have a pad token."
)
batch = self.tokenizer.pad(examples, return_tensors=self.return_tensors, return_attention_mask=False)
else:
batch = {'input_ids': torch.cat([x['input_ids'] for x in examples], dim=0).unsqueeze(0)}
if self.tokenizer.add_bos_token:
offsets = []
if batch['input_ids'][0, 0] != self.tokenizer.bos_token_id:
offsets.append(torch.tensor([0], dtype=torch.long))
offsets.append(torch.where(batch['input_ids'].eq(self.tokenizer.bos_token_id))[1])
offsets.append(torch.tensor([len(batch['input_ids'][0])], dtype=torch.long))
batch['offsets'] = torch.cat(offsets, dim=0)
elif self.tokenizer.add_eos_token:
offsets = [torch.tensor([0], dtype=torch.long)]
offsets.append(torch.where(batch['input_ids'].eq(self.tokenizer.eos_token_id))[1] + 1)
if batch['input_ids'][0, -1] != self.tokenizer.eos_token_id:
offsets.append(torch.tensor([len(batch['input_ids'][0])], dtype=torch.long))
batch['offsets'] = torch.cat(offsets, dim=0)
else:
raise ValueError("You must allow the tokenizer to add either a bos or eos token as separators.")
labels = batch['input_ids'].clone()
if self.tokenizer.pad_token_id is not None:
labels[labels == self.tokenizer.pad_token_id] = -100
batch["labels"] = labels
return batch