|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Any, Dict, List, Union |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import PreTrainedTokenizer |
|
|
|
|
|
@dataclass |
|
class DataCollatorForLanguageModeling: |
|
""" |
|
Data collator used for language modeling. Inputs are dynamically padded to the maximum length of a batch if they |
|
are not all of the same length. |
|
|
|
Args: |
|
tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): |
|
The tokenizer used for encoding the data. |
|
varlen (`bool`): |
|
Whether to return sequences with variable lengths. |
|
If `True`, the offsets indicating the start and end of each sequence will be returned. |
|
For example, if the sequence lengths are `[4, 8, 12]`, |
|
the returned `input_ids` will be a long flattened tensor of shape `[1, 24]`, with `offsets` being `[0, 4, 12, 24]`. |
|
If `False`, the `input_ids` with shape `[batch_size, seq_len]` will be returned directly. |
|
return_tensors (`str`): |
|
The type of Tensor to return. Allowable values are "pt". |
|
|
|
<Tip> |
|
|
|
For best performance, this data collator should be used with a dataset having items that are dictionaries or |
|
BatchEncoding, with the `"special_tokens_mask"` key, as returned by a [`PreTrainedTokenizer`] or a |
|
[`PreTrainedTokenizerFast`] with the argument `return_special_tokens_mask=True`. |
|
|
|
</Tip>""" |
|
|
|
tokenizer: PreTrainedTokenizer |
|
varlen: bool = False |
|
return_tensors: str = "pt" |
|
|
|
def __call__( |
|
self, |
|
examples: List[Union[List[int], Dict[str, Any]]] |
|
) -> Dict[str, Any]: |
|
if not isinstance(examples[0], Dict): |
|
examples = [{'input_ids': x} for x in examples] |
|
if isinstance(examples[0]['input_ids'], List): |
|
examples = [{'input_ids': torch.tensor(x['input_ids'], dtype=torch.long)} for x in examples] |
|
elif isinstance(examples[0]['input_ids'], np.ndarray): |
|
examples = [{'input_ids': torch.from_numpy(x['input_ids'])} for x in examples] |
|
|
|
if not self.varlen: |
|
length_of_first = examples[0]['input_ids'].size(0) |
|
|
|
if all(x['input_ids'].size(0) == length_of_first for x in examples): |
|
batch = {'input_ids': torch.stack([x['input_ids'] for x in examples], dim=0)} |
|
else: |
|
|
|
if self.tokenizer._pad_token is None: |
|
raise ValueError( |
|
f"You are attempting to pad samples but the tokenizer you are using " |
|
f"({self.tokenizer.__class__.__name__}) does not have a pad token." |
|
) |
|
batch = self.tokenizer.pad(examples, return_tensors=self.return_tensors, return_attention_mask=False) |
|
else: |
|
batch = {'input_ids': torch.cat([x['input_ids'] for x in examples], dim=0).unsqueeze(0)} |
|
if self.tokenizer.add_bos_token: |
|
offsets = [] |
|
if batch['input_ids'][0, 0] != self.tokenizer.bos_token_id: |
|
offsets.append(torch.tensor([0], dtype=torch.long)) |
|
offsets.append(torch.where(batch['input_ids'].eq(self.tokenizer.bos_token_id))[1]) |
|
offsets.append(torch.tensor([len(batch['input_ids'][0])], dtype=torch.long)) |
|
batch['offsets'] = torch.cat(offsets, dim=0) |
|
elif self.tokenizer.add_eos_token: |
|
offsets = [torch.tensor([0], dtype=torch.long)] |
|
offsets.append(torch.where(batch['input_ids'].eq(self.tokenizer.eos_token_id))[1] + 1) |
|
if batch['input_ids'][0, -1] != self.tokenizer.eos_token_id: |
|
offsets.append(torch.tensor([len(batch['input_ids'][0])], dtype=torch.long)) |
|
batch['offsets'] = torch.cat(offsets, dim=0) |
|
else: |
|
raise ValueError("You must allow the tokenizer to add either a bos or eos token as separators.") |
|
labels = batch['input_ids'].clone() |
|
if self.tokenizer.pad_token_id is not None: |
|
labels[labels == self.tokenizer.pad_token_id] = -100 |
|
batch["labels"] = labels |
|
return batch |
|
|