File size: 17,140 Bytes
0094a2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# -*- coding: utf-8 -*-

from __future__ import annotations

import math
import warnings
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers.activations import ACT2FN
from transformers.generation import GenerationMixin
from transformers.modeling_outputs import (BaseModelOutputWithPast,
                                           CausalLMOutputWithPast)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging

from fla.layers.bitattn import BitAttention
from fla.models.bitnet.configuration_bitnet import BitNetConfig
from fla.models.utils import Cache
from fla.modules import (FusedCrossEntropyLoss, FusedLinearCrossEntropyLoss,
                         RMSNorm)
from fla.modules.activations import swiglu_bitlinear
from fla.modules.fused_bitlinear import BitLinear, rms_norm_linear_quant

logger = logging.get_logger(__name__)


class BitNetMLP(nn.Module):

    def __init__(
        self,
        hidden_size: int,
        hidden_ratio: Optional[int] = None,
        intermediate_size: Optional[int] = None,
        hidden_act: str = 'swish',
        norm_first: bool = True,
        norm_eps: float = 1e-5
    ) -> BitNetMLP:
        super().__init__()

        self.hidden_size = hidden_size
        # the final number of params is `hidden_ratio * hidden_size^2`
        # `intermediate_size` is chosen to be a multiple of 256 closest to `2/3 * hidden_size * hidden_ratio`
        if hidden_ratio is None:
            hidden_ratio = 4
        if intermediate_size is None:
            intermediate_size = int(hidden_size * hidden_ratio * 2 / 3)
            intermediate_size = 256 * ((intermediate_size + 256 - 1) // 256)
        self.hidden_ratio = hidden_ratio
        self.intermediate_size = intermediate_size
        self.norm_first = norm_first

        if norm_first:
            self.norm = RMSNorm(hidden_size=hidden_size, eps=norm_eps)

        self.gate_proj = BitLinear(self.hidden_size, self.intermediate_size * 2, bias=False)
        self.down_proj = BitLinear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[hidden_act]

    def forward(self, x):
        if self.norm_first:
            x = rms_norm_linear_quant(x, self.norm.weight, self.norm.bias, self.gate_proj.weight, self.gate_proj.bias)
        else:
            x = self.gate_proj(x)
        gate, y = x.chunk(2, -1)
        return swiglu_bitlinear(gate, y, self.down_proj.weight, self.down_proj.bias)


class BitNetBlock(nn.Module):

    def __init__(self, config: BitNetConfig, layer_idx: int):
        super().__init__()

        self.hidden_size = config.hidden_size

        if not config.norm_first:
            self.attn_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
        self.attn = BitAttention(
            hidden_size=config.hidden_size,
            num_heads=config.num_heads,
            num_kv_heads=config.num_kv_heads,
            window_size=config.window_size,
            rope_theta=config.rope_theta,
            max_position_embeddings=config.max_position_embeddings,
            norm_first=config.norm_first,
            norm_eps=config.norm_eps,
            layer_idx=layer_idx
        )
        if not config.norm_first:
            self.mlp_norm = RMSNorm(hidden_size=config.hidden_size, eps=config.norm_eps)
        self.mlp = BitNetMLP(
            hidden_size=config.hidden_size,
            hidden_ratio=config.hidden_ratio,
            intermediate_size=config.intermediate_size,
            hidden_act=config.hidden_act,
            norm_first=config.norm_first,
            norm_eps=config.norm_eps
        )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Tuple[torch.Tensor]] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:

        residual = hidden_states
        if hasattr(self, 'attn_norm'):
            hidden_states = self.attn_norm(hidden_states)
        hidden_states, attentions, past_key_values = self.attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions
        )
        if hasattr(self, 'mlp_norm'):
            hidden_states, residual = self.mlp_norm(hidden_states, residual, True)
        else:
            hidden_states = residual + hidden_states
            residual = hidden_states
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)

        if output_attentions:
            outputs += (attentions,)

        if use_cache:
            outputs += (past_key_values,)

        return outputs


class BitNetPreTrainedModel(PreTrainedModel):

    config_class = BitNetConfig
    supports_gradient_checkpointing = True
    _no_split_modules = ['BitNetBlock']

    def __init__(self, *inputs, **kwargs):
        super().__init__(*inputs, **kwargs)

    def _init_weights(
        self,
        module: nn.Module,
        rescale_prenorm_residual: bool = False,
        num_residuals_per_layer: int = 2,
    ):
        if isinstance(module, (BitLinear, nn.Conv1d)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
            if module.bias is not None:
                nn.init.zeros_(module.bias)
        elif isinstance(module, nn.Embedding):
            nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

        if rescale_prenorm_residual:
            # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
            #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
            #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
            #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
            #
            # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
            for name, p in module.named_parameters():
                if name in ["o_proj.weight", "down_proj.weight"]:
                    # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                    # Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
                    # We need to reinit p since this code could be called multiple times
                    # Having just p *= scale would repeatedly scale it down
                    with torch.no_grad():
                        p /= math.sqrt(num_residuals_per_layer * self.config.num_hidden_layers)


class BitNetModel(BitNetPreTrainedModel):

    def __init__(self, config: BitNetConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList([BitNetBlock(config, layer_idx) for layer_idx in range(config.num_hidden_layers)])
        self.norm = RMSNorm(config.hidden_size, eps=config.norm_eps)

        self.gradient_checkpointing = False

        self.post_init()

    def get_input_embeddings(self):
        return self.embeddings

    def set_input_embeddings(self, value):
        self.embeddings = value

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        if output_attentions:
            warnings.warn(
                "`BitNetModel` does not support output attention weights now, so `output_attentions` is set to `False`."
            )
            output_attentions = False
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # retrieve input_ids and inputs_embeds
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is None and inputs_embeds is None:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if use_cache and not isinstance(past_key_values, Cache):
            past_key_values = Cache.from_legacy_cache(past_key_values)

        if inputs_embeds is None:
            inputs_embeds = self.embeddings(input_ids)

        # embed positions
        hidden_states = inputs_embeds

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        all_hidden_states = () if output_hidden_states else None
        all_attns = () if output_attentions else None
        next_cache = None

        for layer in self.layers:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer.__call__,
                    hidden_states,
                    attention_mask,
                    past_key_values,
                    output_attentions,
                    use_cache
                )
            else:
                layer_outputs = layer(
                    hidden_states,
                    attention_mask=attention_mask,
                    past_key_values=past_key_values,
                    output_attentions=output_attentions,
                    use_cache=use_cache
                )

            hidden_states = layer_outputs[0]

            if use_cache:
                next_cache = layer_outputs[2 if output_attentions else 1]

            if output_attentions:
                all_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        if not return_dict:
            return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_attns] if v is not None)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=next_cache,
            hidden_states=all_hidden_states,
            attentions=all_attns
        )


class BitNetForCausalLM(BitNetPreTrainedModel, GenerationMixin):

    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.model = BitNetModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = BitLinear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embeddings

    def set_input_embeddings(self, value):
        self.model.embeddings = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.LongTensor = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.Tensor] = None,
        use_cache: bool = True,
        num_logits_to_keep: Optional[int] = None,
        **kwargs
    ):
        # only last token for `inputs_ids` if the `past_key_values` is passed along.
        if past_key_values is not None:
            input_ids = input_ids[:, -1:]
        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {'inputs_embeds': inputs_embeds}
        else:
            # The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
            # recompiles graphs as the stride of the inputs is a guard.
            # Ref: https://github.com/huggingface/transformers/pull/29114
            # TODO: use `next_tokens` directly instead.
            model_inputs = {'input_ids': input_ids.contiguous()}

        if num_logits_to_keep is not None:
            model_inputs['num_logits_to_keep'] = num_logits_to_keep

        model_inputs.update({
            'past_key_values': past_key_values,
            'use_cache': use_cache,
            'attention_mask': attention_mask,
            'num_logits_to_keep': num_logits_to_keep,
        })
        return model_inputs

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        num_logits_to_keep: Optional[int] = 0
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict
        )

        hidden_states = outputs[0]
        fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
        logits = None if fuse_linear_and_cross_entropy else self.lm_head(hidden_states[:, -num_logits_to_keep:])

        loss = None
        if labels is not None:
            if self.config.fuse_cross_entropy:
                if fuse_linear_and_cross_entropy:
                    loss_fct = FusedLinearCrossEntropyLoss()
                else:
                    loss_fct = FusedCrossEntropyLoss(inplace_backward=True)
            else:
                loss_fct = nn.CrossEntropyLoss()
            # Enable model parallelism
            labels = labels.to(hidden_states.device)
            labels = torch.cat((labels[..., 1:], torch.full_like(labels[:, :1], loss_fct.ignore_index)), 1)
            if fuse_linear_and_cross_entropy:
                loss = loss_fct(hidden_states.view(-1, self.config.hidden_size),
                                labels.view(-1),
                                self.lm_head.weight,
                                self.lm_head.bias)
            else:
                loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )