File size: 17,601 Bytes
0094a2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 |
# -*- coding: utf-8 -*-
# Code adapted from
# https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/fused_linear_cross_entropy.py
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
import triton
import triton.language as tl
from fla.ops.utils import logsumexp_fwd
from fla.utils import contiguous
# The hard limit of TRITON_MAX_TENSOR_NUMEL is 1048576
# https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/language/core.py#L19
# However, setting limit as 65536 as in LayerNorm tutorial is faster because of less register spilling
# The optimal maximum block size depends on your hardware, your kernel, and your dtype
MAX_FUSED_SIZE = 65536 // 2
@triton.jit
def cross_entropy_kernel(
logits,
lse,
target,
loss,
total,
ignore_index,
label_smoothing: tl.constexpr,
logit_scale: tl.constexpr,
reduction: tl.constexpr,
V: tl.constexpr,
BV: tl.constexpr
):
"""
This kernel computes both cross entropy loss and the gradient of the input.
We only consider hard label + mean reduction for now.
Please refer to https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html for the math.
Args:
logits:
Pointer to logits tensor.
lse:
Pointer to logsumexp tensor.
target: Pointer to target tensor.
loss:
Pointer to tensor to store the loss.
V (int):
The number of columns in the input tensor.
total (int):
The number of non-ignored classes.
ignore_index (int):
The index to ignore in the target.
label_smoothing (float):
The amount of smoothing when computing the loss, where 0.0 means no smoothing.
reduction (str):
The string for the reduction to apply
BV (int):
The block size for vocab.
"""
# https://github.com/triton-lang/triton/issues/1058
# If B*T*V is too large, i_n * stride will overflow out of int32, so we convert to int64
i_n = tl.program_id(0).to(tl.int64)
NV = tl.cdiv(V, BV)
# 1. Load target first because if the target is ignore_index, we can return right away
b_y = tl.load(target + i_n)
# 2. locate the start index
logits += i_n * V
if b_y == ignore_index:
# set all x as 0
for i in range(0, V, BV):
o_v = i + tl.arange(0, BV)
tl.store(logits + o_v, 0.0, mask=o_v < V)
return
# Online softmax: 2 loads + 1 store (compared with 3 loads + 1 store for the safe softmax)
# Refer to Algorithm 3 in the paper: https://arxiv.org/pdf/1805.02867
# 3. [Online softmax] first pass: compute logsumexp
# we did this in anouter kernel
b_l = tl.load(logits + b_y) * logit_scale
b_lse = tl.load(lse + i_n)
# 4. Calculate the loss
# loss = lse - logits_l
b_loss = b_lse - b_l
# Label smoothing is a general case of normal cross entropy
# See the full derivation at https://github.com/linkedin/Liger-Kernel/pull/198#issue-2503665310
b_z = 0.0
eps = label_smoothing / V
# We need tl.debug_barrier() as mentioned in
# https://github.com/triton-lang/triton/blob/ba42a5c68fd0505f8c42f4202d53be0f8d9a5fe0/python/triton/ops/cross_entropy.py#L34
tl.debug_barrier()
# 5. [Online Softmax] Second pass: compute gradients
# For 'mean' reduction, gradients are normalized by number of non-ignored elements
# dx_y = (softmax(x_y) - 1) / N
# dx_i = softmax(x_i) / N, i != y
# For label smoothing:
# dx_i = (softmax(x_y) - label_smoothing / V) / N, i != y
# dx_y = (softmax(x_y) - label_smoothing / V - (1 - label_smoothing)) / N
# = dx_i - (1 - label_smoothing) / N
for iv in range(0, NV):
o_v = iv * BV + tl.arange(0, BV)
b_logits = tl.load(logits + o_v, mask=o_v < V, other=float('-inf')) * logit_scale
if label_smoothing > 0:
# scale X beforehand to avoid overflow
b_z += tl.sum(tl.where(o_v < V, -eps * b_logits, 0.0))
b_p = (tl.exp(b_logits - b_lse) - eps) * logit_scale
if reduction == "mean":
b_p = b_p / total
tl.store(logits + o_v, b_p, mask=o_v < V)
tl.debug_barrier()
# Orginal loss = H(q, p), with label smoothing regularization = H(q', p) and (label_smoothing / V) = eps
# H(q', p) = (1 - label_smoothing) * H(q, p) + label_smoothing * H(u, p)
# = (1 - label_smoothing) * H(q, p) + eps * sum(logsoftmax(x_i))
# By using m (global max of xi) and d (sum of e^(xi-m)), we can simplify as:
# = (1 - label_smoothing) * H(q, p) + (-sum(x_i * eps) + label_smoothing * (m + logd))
# Refer to H(q', p) in section 7 of the paper:
# https://arxiv.org/pdf/1512.00567
# pytorch:
# https://github.com/pytorch/pytorch/blob/2981534f54d49fa3a9755c9b0855e7929c2527f0/aten/src/ATen/native/LossNLL.cpp#L516
# See full derivation at https://github.com/linkedin/Liger-Kernel/pull/198#issuecomment-2333753087
if label_smoothing > 0:
b_loss = b_loss * (1 - label_smoothing) + (b_z + label_smoothing * b_lse)
# 6. Specially handle the i==y case where `dx_y = (softmax(x_y) - (1 - label_smoothing) / N`
b_l = tl.load(logits + b_y)
# Normalize the loss by the number of non-ignored elements if reduction is "mean"
if reduction == 'mean':
b_loss = b_loss / total
b_l += (label_smoothing - 1) / total * logit_scale
else:
b_l += (label_smoothing - 1) * logit_scale
tl.store(loss + i_n, b_loss)
tl.store(logits + b_y, b_l)
@triton.jit
def elementwise_mul_kernel(
x,
g,
N: tl.constexpr,
B: tl.constexpr
):
"""
This function multiplies each element of the tensor pointed by x with the value pointed by g.
The multiplication is performed in-place on the tensor pointed by x.
Parameters:
x:
Pointer to the input tensor.
g:
Pointer to the gradient output value.
N (int):
The number of columns in the input tensor.
B (int):
The block size for Triton operations.
"""
# Get the program ID and convert it to int64 to avoid overflow
i_x = tl.program_id(0).to(tl.int64)
o_x = i_x * B + tl.arange(0, B)
# Load the gradient output value
b_g = tl.load(g)
b_x = tl.load(x + o_x, mask=o_x < N)
tl.store(x + o_x, b_x * b_g, mask=o_x < N)
def fused_linear_cross_entropy_forward(
x: torch.Tensor,
target: torch.LongTensor,
weight: torch.Tensor,
bias: torch.Tensor = None,
ignore_index: int = -100,
label_smoothing: float = 0.0,
logit_scale: float = 1.0,
num_chunks: int = 8,
reduction: str = "mean"
):
device = x.device
# inputs have shape: [N, H]
# materialized activations will have shape: [N, V]
# the increase in memory = [N, V]
# reduction can be achieved by partitioning the number of tokens N into smaller chunks.
# ideally, we would like to achieve the same memory consumption as [N, H],
# so the expected chunk size should be:
# NC = ceil(V / H)
# C = ceil(N / NC)
# for ex: N = 4096*4, V = 32000, H = 4096 ==> NC = 8, C = ceil(N / NC) = 2048
N, H, V = *x.shape, weight.shape[0]
BV = min(MAX_FUSED_SIZE, triton.next_power_of_2(V))
# TODO: in real cases, we may need to limit the number of chunks NC to
# ensure the precisions of accumulated gradients
NC = min(num_chunks, triton.cdiv(V, H))
C = triton.next_power_of_2(triton.cdiv(N, NC))
NC = triton.cdiv(N, C)
dx = torch.zeros_like(x, device=device)
dw = torch.zeros_like(weight, device=device) if weight is not None else None
db = torch.zeros_like(bias, device=device) if bias is not None else None
# we use fp32 for loss accumulator
loss = torch.zeros(N, dtype=torch.float32, device=device)
total = target.ne(ignore_index).sum().item()
for ic in range(NC):
start, end = ic * C, min((ic + 1) * C, N)
# [C, N]
c_x = x[start:end]
# when doing matmul, use the original precision
# [C, V]
c_logits = F.linear(c_x, weight, bias)
c_target = target[start:end]
# [C]
# keep lse in fp32 to maintain precision
c_lse = logsumexp_fwd(c_logits, scale=logit_scale, dtype=torch.float)
# unreduced loss
c_loss = loss[start:end]
# Here we calculate the gradient of c_logits in place so we can save memory.
cross_entropy_kernel[(c_logits.shape[0],)](
logits=c_logits,
lse=c_lse,
target=c_target,
loss=c_loss,
total=total,
ignore_index=ignore_index,
label_smoothing=label_smoothing,
logit_scale=logit_scale,
reduction=reduction,
V=V,
BV=BV,
num_warps=32
)
# gradient of logits is computed in-place by the above triton kernel and is of shape: C x V
# thus dx should be of shape: C x H
dx[start:end] = torch.mm(c_logits, weight)
# keep dw in fp32 to maintain precision
if weight is not None:
dw += c_logits.t() @ c_x
if bias is not None:
torch.add(input=db, other=c_logits.sum(0), out=db)
loss = loss.sum()
if dw is not None:
dw = dw.to(weight)
if db is not None:
db = db.to(bias)
return loss, dx, dw, db
def fused_linear_cross_entropy_backward(
do: torch.Tensor,
dx: torch.Tensor,
dw: torch.Tensor,
db: torch.Tensor
):
# If cross entropy is the last layer, do is 1.0. Skip the mul to save time
if torch.ne(do, torch.tensor(1.0, device=do.device)):
# We use a Triton kernel instead of a PyTorch operation because modifying inputs in-place
# for gradient storage and backward multiple times causes anomalies with PyTorch but not with Triton.
N, H = dx.shape
B = min(MAX_FUSED_SIZE, triton.next_power_of_2(H))
elementwise_mul_kernel[(triton.cdiv(N * H, B),)](
x=dx,
g=do,
N=N*H,
B=B,
num_warps=32,
)
# handle dw
if dw is not None:
V, H = dw.shape
elementwise_mul_kernel[(triton.cdiv(V * H, B),)](
x=dw,
g=do,
N=V*H,
B=B,
num_warps=32,
)
if db is not None:
V = db.shape[0]
elementwise_mul_kernel[(triton.cdiv(V, B),)](
x=db,
g=do,
N=V,
B=B,
num_warps=32,
)
return dx, dw, db
class FusedLinearCrossEntropyFunction(torch.autograd.Function):
@staticmethod
@contiguous
def forward(
ctx,
x: torch.Tensor,
target: torch.LongTensor,
weight: torch.Tensor,
bias: torch.Tensor = None,
ignore_index: int = -100,
label_smoothing: float = 0.0,
logit_scale: float = 1.0,
num_chunks: int = 8,
reduction: str = "mean"
):
"""
Fusing the last linear layer with cross-entropy loss
Reference: https://github.com/mgmalek/efficient_cross_entropy
Handle the forward and backward pass of the final linear layer via cross-entropy loss by avoiding
the materialization of the large logits tensor. Since Cross Entropy Loss is the last layer, we can
compute the gradient at the forward pass. By doing so, we don't have to store the x and target
for the backward pass.
x (torch.Tensor): [batch_size * seq_len, hidden_size]
target (torch.LongTensor): [batch_size * seq_len]
where each value is in [0, vocab_size).
weight (torch.Tensor): [vocab_size, hidden_size]
where `vocab_size` is the number of classes.
bias (Optional[torch.Tensor]): [vocab_size]
where `vocab_size` is the number of classes.
ignore_index:
the index to ignore in the target.
label_smoothing:
the amount of smoothing when computing the loss, where 0.0 means no smoothing.
logit_scale: float = 1.0,
A scaling factor applied to the logits. Default: 1.0
num_chunks: int
The number of chunks to split the input tensor into for processing.
This can help optimize memory usage and computation speed.
Default: 8
reduction:
Specifies the reduction to apply to the output: 'mean' | 'sum'.
'mean': the weighted mean of the output is taken,
'sum': the output will be summed.
Default: 'mean'.
"""
loss, dx, dw, db = fused_linear_cross_entropy_forward(
x,
target,
weight,
bias,
ignore_index,
label_smoothing,
logit_scale,
num_chunks,
reduction
)
# downcast to dtype and store for backward
ctx.save_for_backward(
dx.detach(),
dw.detach() if weight is not None else None,
db.detach() if bias is not None else None,
)
return loss
@staticmethod
@contiguous
def backward(ctx, do):
dx, dw, db = ctx.saved_tensors
dx, dw, db = fused_linear_cross_entropy_backward(do, dx, dw, db)
return dx, None, dw, db, None, None, None, None, None
def fused_linear_cross_entropy_loss(
x: torch.Tensor,
target: torch.LongTensor,
weight: torch.Tensor,
bias: torch.Tensor = None,
ignore_index: int = -100,
label_smoothing: float = 0.0,
logit_scale: float = 1.0,
num_chunks: int = 8,
reduction: str = "mean"
) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Args:
x (torch.Tensor): [batch_size * seq_len, hidden_size]
target (torch.LongTensor): [batch_size * seq_len]
where each value is in [0, vocab_size).
weight (torch.Tensor): [vocab_size, hidden_size]
where `vocab_size` is the number of classes.
bias (Optional[torch.Tensor]): [vocab_size]
where `vocab_size` is the number of classes.
ignore_index: int.
If target == ignore_index, the loss is set to 0.0.
label_smoothing: float
logit_scale: float
A scaling factor applied to the logits. Default: 1.0
num_chunks: int
The number of chunks to split the input tensor into for processing.
This can help optimize memory usage and computation speed.
Default: 8
reduction:
Specifies the reduction to apply to the output: 'mean' | 'sum'.
'mean': the weighted mean of the output is taken,
'sum': the output will be summed.
Default: 'mean'.
Returns:
losses: [batch,], float
"""
return FusedLinearCrossEntropyFunction.apply(
x,
target,
weight,
bias,
ignore_index,
label_smoothing,
logit_scale,
num_chunks,
reduction
)
class FusedLinearCrossEntropyLoss(nn.Module):
def __init__(
self,
ignore_index: int = -100,
label_smoothing: float = 0.0,
logit_scale: float = 1.0,
num_chunks: int = 8,
reduction: str = "mean"
):
"""
Args:
ignore_index: int.
If target == ignore_index, the loss is set to 0.0.
label_smoothing: float
logit_scale: float
A scaling factor applied to the logits. Default: 1.0
num_chunks: int
The number of chunks to split the input tensor into for processing.
This can help optimize memory usage and computation speed.
Default: 8
reduction:
Specifies the reduction to apply to the output: 'mean' | 'sum'.
'mean': the weighted mean of the output is taken,
'sum': the output will be summed.
Default: 'mean'.
"""
super().__init__()
assert reduction in ["none", "mean", "sum"], f"reduction: {reduction} is not supported"
self.ignore_index = ignore_index
self.label_smoothing = label_smoothing
self.logit_scale = logit_scale
self.num_chunks = num_chunks
self.reduction = reduction
def forward(
self,
x: torch.Tensor,
target: torch.LongTensor,
weight: torch.Tensor,
bias: Optional[torch.Tensor] = None
):
"""
Args:
x (torch.Tensor): [batch_size * seq_len, hidden_size]
target (torch.LongTensor): [batch_size * seq_len]
where each value is in [0, V).
weight (torch.Tensor): [vocab_size, hidden_size]
where `vocab_size` is the number of classes.
bias (Optional[torch.Tensor]): [vocab_size]
where `vocab_size` is the number of classes.
Returns:
loss
"""
loss = fused_linear_cross_entropy_loss(
x,
target,
weight=weight,
bias=bias,
ignore_index=self.ignore_index,
label_smoothing=self.label_smoothing,
logit_scale=self.logit_scale,
num_chunks=self.num_chunks,
reduction=self.reduction
)
return loss
|