zaydzuhri's picture
Training in progress, step 2500
0094a2a verified
# -*- coding: utf-8 -*-
from __future__ import annotations
from typing import Any, Dict, List, Optional, Tuple
import torch
import transformers
class Cache(transformers.cache_utils.Cache):
"""
A cache used for storing hidden states produced by flash linear attention models.
It stores the states of each layer as the tensor of shape `[batch_size, key_dim, value_dim]`.
"""
def __init__(
self,
seen_tokens: int = 0
) -> Cache:
self.states: List[Dict[str, Any]] = []
self._seen_tokens = seen_tokens # Used in `generate` to keep tally of how many tokens the cache has seen
def __getitem__(self, layer_idx: int) -> Dict[str, Any]:
if layer_idx < len(self):
return self.states[layer_idx]
else:
raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")
def __iter__(self):
for state in self.states:
yield state
def __len__(self):
return len(self.states)
def update(
self,
recurrent_state: torch.Tensor = None,
attn_state: Tuple[torch.Tensor, torch.Tensor] = None,
conv_state: Tuple[torch.Tensor] = None,
ffn_state: torch.Tensor = None,
layer_idx: int = 0,
offset: Optional[int] = 1,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
"""
Updates the cache with the new `recurrent_state`/`attn_state`/`conv_state` for the layer `layer_idx`.
Args:
recurrent_state (`torch.Tensor`, `optional`):
The new recurrent state to cache.
attn_state (`Tuple[torch.Tensor, torch.Tensor]`, `optional`):
The new attention key/value states to cache.
conv_state (`Tuple[torch.Tensor]`, `optional`):
The new convolution state to cache.
layer_idx (`int`, defaults to 0):
The index of the layer to cache the states for.
offset (`int`, `optional`, defaults to 1):
The number of new tokens being processed.
cache_kwargs (`Dict[str, Any]`, `optional`):
Additional arguments for the cache subclass.
Return:
Dictionary of the updated state.
"""
# Update the number of seen tokens
if layer_idx == 0:
self._seen_tokens += offset
if attn_state is not None:
input_size = attn_state[0].shape[-2]
window_size = cache_kwargs.get('window_size', None)
if not isinstance(attn_state, Tuple) or len(attn_state) != 2:
raise ValueError("`attn_state` must be a tuple of two tensors for key/value states")
if len(self.states) <= layer_idx:
if attn_state is not None:
if window_size is not None and input_size > window_size:
attn_state = (attn_state[0][..., -window_size:, :].contiguous(),
attn_state[1][..., -window_size:, :].contiguous())
state = dict(
recurrent_state=recurrent_state,
attn_state=attn_state,
conv_state=conv_state,
ffn_state=ffn_state
)
self.states.append(state)
else:
state = self.states[layer_idx]
if recurrent_state is not None:
state['recurrent_state'] = recurrent_state
if attn_state is not None:
key_state, value_state = state['attn_state']
if window_size is not None and key_state.shape[-2] == window_size:
# DO NOT allocate new memory if the cache is full
# roll the key/value states to the left by `input_size`
key_state = key_state.roll(-input_size, -2)
value_state = value_state.roll(-input_size, -2)
# replace the last `input_size` tokens with the new key/value states
key_state[..., -input_size:, :] = attn_state[0]
value_state[..., -input_size:, :] = attn_state[1]
attn_state = (key_state, value_state)
else:
attn_state = (torch.cat([key_state, attn_state[0]], -2),
torch.cat([value_state, attn_state[1]], -2),)
state['attn_state'] = attn_state
if conv_state is not None:
state['conv_state'] = conv_state
if ffn_state is not None:
state['ffn_state'] = ffn_state
return state
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
if len(self.states) <= layer_idx:
return 0
return self._seen_tokens
def get_max_length(self) -> Optional[int]:
"""Returns the maximum sequence length of the cached states. Cache does not have a maximum length."""
return None
def to_legacy_cache(self) -> Tuple:
return tuple(self.states)
@classmethod
def from_legacy_cache(
cls,
past_key_values: Optional[Tuple] = None,
seen_tokens: int = 0
) -> Cache:
"""Converts a cache in the legacy cache format into an equivalent `Cache`."""
cache = cls(seen_tokens)
if past_key_values is not None:
for layer_idx in range(len(past_key_values)):
cache.states.append(past_key_values[layer_idx])
return cache