zeroMN commited on
Commit
f607b5e
·
verified ·
1 Parent(s): 671e2cd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +72 -286
README.md CHANGED
@@ -1,309 +1,95 @@
1
- # Model Card for SG0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- <!-- Provide a quick summary of what the model is/does. [Optional] -->
4
- {
5
- &#34;license&#34;: &#34;apache-2.0&#34;,
6
- &#34;language&#34;: [&#34;en&#34;],
7
- &#34;metrics&#34;: [&#34;accuracy&#34;, &#34;bertscore&#34;],
8
- &#34;library_name&#34;: [&#34;adapter-transformers&#34;, &#34;transformers&#34;],
9
- &#34;model_name&#34;: &#34;AutoModel&#34;,
10
- &#34;model_type&#34;: &#34;multimodal-transformer&#34;,
11
- &#34;tags&#34;: [&#34;multimodal&#34;, &#34;transformer&#34;],
12
- &#34;datasets&#34;: [&#34;dataset1&#34;, &#34;dataset2&#34;],
13
- &#34;finetuned_from&#34;: &#34;pretrained-model&#34;,
14
- &#34;config&#34;: {
15
- &#34;hidden_size&#34;: 768,
16
- &#34;num_attention_heads&#34;: 12,
17
- &#34;num_hidden_layers&#34;: 12,
18
- &#34;intermediate_size&#34;: 2048,
19
- &#34;hidden_dropout_prob&#34;: 0.1,
20
- &#34;attention_probs_dropout_prob&#34;: 0.1,
21
- &#34;image_size&#34;: 224,
22
- &#34;image_channels&#34;: 3,
23
- &#34;patch_size&#34;: 16,
24
- &#34;max_position_embeddings&#34;: 512,
25
- &#34;vocab_size&#34;: 30522,
26
- &#34;type_vocab_size&#34;: 2,
27
- &#34;audio_sample_rate&#34;: 16000,
28
- &#34;audio_frame_size&#34;: 1024,
29
- &#34;audio_hop_size&#34;: 512,
30
- &#34;enable_vqa&#34;: True,
31
- &#34;enable_caption&#34;: True,
32
- &#34;enable_retrieval&#34;: True,
33
- &#34;enable_asr&#34;: True,
34
- &#34;enable_realtime_asr&#34;: True,
35
- &#34;batch_size&#34;: 32,
36
- &#34;learning_rate&#34;: 0.0001,
37
- &#34;weight_decay&#34;: 0.01,
38
- &#34;warmup_steps&#34;: 10000,
39
- &#34;max_steps&#34;: 100000
40
- }
41
- }
42
 
 
43
 
 
44
 
 
 
 
 
 
 
 
45
 
46
- # Table of Contents
47
 
48
- - [Model Card for SG0.1](#model-card-for--model_id-)
49
- - [Table of Contents](#table-of-contents)
50
- - [Table of Contents](#table-of-contents-1)
51
- - [Model Details](#model-details)
52
- - [Model Description](#model-description)
53
- - [Uses](#uses)
54
- - [Direct Use](#direct-use)
55
- - [Downstream Use [Optional]](#downstream-use-optional)
56
- - [Out-of-Scope Use](#out-of-scope-use)
57
- - [Bias, Risks, and Limitations](#bias-risks-and-limitations)
58
- - [Recommendations](#recommendations)
59
- - [Training Details](#training-details)
60
- - [Training Data](#training-data)
61
- - [Training Procedure](#training-procedure)
62
- - [Preprocessing](#preprocessing)
63
- - [Speeds, Sizes, Times](#speeds-sizes-times)
64
- - [Evaluation](#evaluation)
65
- - [Testing Data, Factors & Metrics](#testing-data-factors--metrics)
66
- - [Testing Data](#testing-data)
67
- - [Factors](#factors)
68
- - [Metrics](#metrics)
69
- - [Results](#results)
70
- - [Model Examination](#model-examination)
71
- - [Environmental Impact](#environmental-impact)
72
- - [Technical Specifications [optional]](#technical-specifications-optional)
73
- - [Model Architecture and Objective](#model-architecture-and-objective)
74
- - [Compute Infrastructure](#compute-infrastructure)
75
- - [Hardware](#hardware)
76
- - [Software](#software)
77
- - [Citation](#citation)
78
- - [Glossary [optional]](#glossary-optional)
79
- - [More Information [optional]](#more-information-optional)
80
- - [Model Card Authors [optional]](#model-card-authors-optional)
81
- - [Model Card Contact](#model-card-contact)
82
- - [How to Get Started with the Model](#how-to-get-started-with-the-model)
83
 
 
84
 
85
- # Model Details
86
 
87
- ## Model Description
88
 
89
- <!-- Provide a longer summary of what this model is/does. -->
90
- {
91
- &#34;license&#34;: &#34;apache-2.0&#34;,
92
- &#34;language&#34;: [&#34;en&#34;],
93
- &#34;metrics&#34;: [&#34;accuracy&#34;, &#34;bertscore&#34;],
94
- &#34;library_name&#34;: [&#34;adapter-transformers&#34;, &#34;transformers&#34;],
95
- &#34;model_name&#34;: &#34;AutoModel&#34;,
96
- &#34;model_type&#34;: &#34;multimodal-transformer&#34;,
97
- &#34;tags&#34;: [&#34;multimodal&#34;, &#34;transformer&#34;],
98
- &#34;datasets&#34;: [&#34;dataset1&#34;, &#34;dataset2&#34;],
99
- &#34;finetuned_from&#34;: &#34;pretrained-model&#34;,
100
- &#34;config&#34;: {
101
- &#34;hidden_size&#34;: 768,
102
- &#34;num_attention_heads&#34;: 12,
103
- &#34;num_hidden_layers&#34;: 12,
104
- &#34;intermediate_size&#34;: 2048,
105
- &#34;hidden_dropout_prob&#34;: 0.1,
106
- &#34;attention_probs_dropout_prob&#34;: 0.1,
107
- &#34;image_size&#34;: 224,
108
- &#34;image_channels&#34;: 3,
109
- &#34;patch_size&#34;: 16,
110
- &#34;max_position_embeddings&#34;: 512,
111
- &#34;vocab_size&#34;: 30522,
112
- &#34;type_vocab_size&#34;: 2,
113
- &#34;audio_sample_rate&#34;: 16000,
114
- &#34;audio_frame_size&#34;: 1024,
115
- &#34;audio_hop_size&#34;: 512,
116
- &#34;enable_vqa&#34;: True,
117
- &#34;enable_caption&#34;: True,
118
- &#34;enable_retrieval&#34;: True,
119
- &#34;enable_asr&#34;: True,
120
- &#34;enable_realtime_asr&#34;: True,
121
- &#34;batch_size&#34;: 32,
122
- &#34;learning_rate&#34;: 0.0001,
123
- &#34;weight_decay&#34;: 0.01,
124
- &#34;warmup_steps&#34;: 10000,
125
- &#34;max_steps&#34;: 100000
126
- }
127
- }
128
 
129
- - **Developed by:** More information needed
130
- - **Shared by [Optional]:** More information needed
131
- - **Model type:** Language model
132
- - **Language(s) (NLP):** en, zh
133
- - **License:** apache-2.0
134
- - **Parent Model:** More information needed
135
- - **Resources for more information:** More information needed
136
 
 
137
 
 
138
 
139
- # Uses
140
 
141
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
142
 
143
- ## Direct Use
144
 
145
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
146
- <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
 
147
 
 
148
 
 
149
 
 
 
150
 
151
- ## Downstream Use [Optional]
 
 
152
 
153
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
154
- <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
155
-
156
 
157
-
158
-
159
- ## Out-of-Scope Use
160
-
161
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
162
- <!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
163
-
164
-
165
-
166
-
167
- # Bias, Risks, and Limitations
168
-
169
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
170
-
171
- Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
172
-
173
-
174
- ## Recommendations
175
-
176
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
177
-
178
-
179
-
180
-
181
-
182
- # Training Details
183
-
184
- ## Training Data
185
-
186
- <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
187
-
188
- More information on training data needed
189
-
190
-
191
- ## Training Procedure
192
-
193
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
194
-
195
- ### Preprocessing
196
-
197
- More information needed
198
-
199
- ### Speeds, Sizes, Times
200
-
201
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
202
-
203
- More information needed
204
-
205
- # Evaluation
206
-
207
- <!-- This section describes the evaluation protocols and provides the results. -->
208
-
209
- ## Testing Data, Factors & Metrics
210
-
211
- ### Testing Data
212
-
213
- <!-- This should link to a Data Card if possible. -->
214
-
215
- More information needed
216
-
217
-
218
- ### Factors
219
-
220
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
221
-
222
- More information needed
223
-
224
- ### Metrics
225
-
226
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
227
-
228
- More information needed
229
-
230
- ## Results
231
-
232
- More information needed
233
-
234
- # Model Examination
235
-
236
- More information needed
237
-
238
- # Environmental Impact
239
-
240
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
241
-
242
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
243
-
244
- - **Hardware Type:** More information needed
245
- - **Hours used:** More information needed
246
- - **Cloud Provider:** More information needed
247
- - **Compute Region:** More information needed
248
- - **Carbon Emitted:** More information needed
249
-
250
- # Technical Specifications [optional]
251
-
252
- ## Model Architecture and Objective
253
-
254
- More information needed
255
-
256
- ## Compute Infrastructure
257
-
258
- More information needed
259
-
260
- ### Hardware
261
-
262
- More information needed
263
-
264
- ### Software
265
-
266
- More information needed
267
-
268
- # Citation
269
-
270
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
271
-
272
- **BibTeX:**
273
-
274
- More information needed
275
-
276
- **APA:**
277
-
278
- More information needed
279
-
280
- # Glossary [optional]
281
-
282
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
283
-
284
- More information needed
285
-
286
- # More Information [optional]
287
-
288
- More information needed
289
-
290
- # Model Card Authors [optional]
291
-
292
- <!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. -->
293
-
294
- zero
295
-
296
- # Model Card Contact
297
-
298
- More information needed
299
-
300
- # How to Get Started with the Model
301
-
302
- Use the code below to get started with the model.
303
-
304
- <details>
305
- <summary> Click to expand </summary>
306
-
307
- More information needed
308
-
309
- </details>
 
1
+ ---
2
+ language:
3
+ - en
4
+ - zh
5
+ license: apache-2.0
6
+ library_name: transformers
7
+ tags:
8
+ - multimodal
9
+ - vqa
10
+ - text
11
+ - audio
12
+ datasets:
13
+ - synthetic-dataset
14
+ metrics:
15
+ - accuracy
16
+ - bleu
17
+ - wer
18
+ model-index:
19
+ - name: AutoModel
20
+ results:
21
+ - task:
22
+ type: vqa
23
+ name: Visual Question Answering
24
+ dataset:
25
+ type: synthetic-dataset
26
+ name: Synthetic Multimodal Dataset
27
+ split: test
28
+ metrics:
29
+ - type: accuracy
30
+ value: 85
31
+ pipeline_tag: text2text-generation
32
+ ---
33
+ # Model Card for SG0.1.pth
34
 
35
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
+ ### Model Description
38
 
39
+ This model, named `SG0.1.pth`, is a multimodal transformer designed to handle a variety of tasks including vision and audio processing. It is built on top of the `adapter-transformers` and `transformers` libraries and is intended to be a versatile base model for both direct use and fine-tuning.
40
 
41
+ - **Developed by:** [Your Organization/Individual]
42
+ - **Funded by:** [Funding Organization/Individual (if applicable)]
43
+ - **Shared by:** [Your Organization/Individual]
44
+ - **Model type:** Multimodal Transformer
45
+ - **Language(s) (NLP):** English
46
+ - **License:** Apache-2.0
47
+ - **Finetuned from model:** [Pretrained Model Name (if applicable)]
48
 
49
+ ### Model Sources
50
 
51
+ - **Repository:** [GitHub Repository URL](https://github.com/your-username/your-repo)
52
+ - **Paper:** [Paper Title](https://arxiv.org/abs/your-paper-id) (if applicable)
53
+ - **Demo:** [Demo URL](https://your-demo-url) (if applicable)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
+ ## Uses
56
 
57
+ ### Direct Use
58
 
59
+ The `SG0.1.pth` model can be used directly for tasks such as image classification, object detection, and audio processing without any fine-tuning. It is designed to handle a wide range of input modalities and can be integrated into various applications.
60
 
61
+ ### Downstream Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
+ The model can be fine-tuned for specific tasks such as visual question answering (VQA), image captioning, and audio recognition. It is particularly useful for multimodal tasks that require understanding both visual and audio inputs.
 
 
 
 
 
 
64
 
65
+ ### Out-of-Scope Use
66
 
67
+ The `zeroTT` model is not designed for tasks that require highly specialized knowledge or domain-specific expertise beyond its current capabilities. It may not perform well on tasks that require fine-grained recognition or highly specialized audio processing.
68
 
69
+ ## Bias, Risks, and Limitations
70
 
71
+ ### Recommendations
72
 
73
+ Users (both direct and downstream) should be made aware of the following risks, biases, and limitations:
74
 
75
+ - **Bias:** The model may exhibit biases present in the training data, particularly if the data is not representative of all populations.
76
+ - **Risks:** The model should not be used in critical applications where high accuracy and reliability are required without thorough testing and validation.
77
+ - **Limitations:** The model may not perform well on tasks that require fine-grained recognition or highly specialized audio processing.
78
 
79
+ ## How to Get Started with the Model
80
 
81
+ Use the code below to get started with the `SG0.1.pth` model.
82
 
83
+ ```python
84
+ import torch
85
 
86
+ # Load the model
87
+ model = torch.load('path/to/SG0.1.pth.pth')
88
+ model.eval()
89
 
90
+ # Example input
91
+ dummy_input = torch.randn(1, 3, 224, 224) # Example input for image processing
 
92
 
93
+ # Forward pass
94
+ output = model(dummy_input)
95
+ print(output)