File size: 2,584 Bytes
7120259 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report, confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
# 数据集 URL
data_url = 'https://archive.ics.uci.edu/static/public/15/data.csv'
# 加载数据集
df = pd.read_csv(data_url)
# 查看数据集的前几行
print("数据集的前几行:")
print(df.head())
# 数据预处理
# 处理缺失值(将 '?' 替换为 NaN)
df['Bare_nuclei'] = df['Bare_nuclei'].replace('?', None).astype(float) # 将 '?' 替换为 None
df = df.dropna() # 删除含有缺失值的行
# 编码目标变量(将 2 和 4 转换为 0 和 1)
df['Class'] = df['Class'].map({2: 0, 4: 1})
# 特征和目标
X = df.drop(columns=['Sample_code_number', 'Class']) # 特征
y = df['Class'] # 目标
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 输出分类报告
print("\n分类报告:")
print(classification_report(y_test, y_pred))
# 可视化混淆矩阵
cm = confusion_matrix(y_test, y_pred)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Benign', 'Malignant'], yticklabels=['Benign', 'Malignant'])
plt.ylabel('Actual')
plt.xlabel('Predicted')
plt.title('Confusion Matrix')
plt.show()
# 可视化特征重要性
feature_importances = model.feature_importances_
features = X.columns
indices = range(len(features))
# 创建条形图
plt.figure(figsize=(12, 6))
sns.barplot(x=feature_importances, y=features)
plt.title('Feature Importance')
plt.xlabel('Importance')
plt.ylabel('Feature')
plt.show()
###############################################
from ucimlrepo import fetch_ucirepo
# fetch dataset
breast_cancer_wisconsin_original = fetch_ucirepo(id=15)
# data (as pandas dataframes)
X = breast_cancer_wisconsin_original.data.features
y = breast_cancer_wisconsin_original.data.targets
# metadata
print(breast_cancer_wisconsin_original.metadata)
# variable information
print(breast_cancer_wisconsin_original.variables)
##########################################################
# 0 0.93 0.99 0.96 79
# 1 0.98 0.90 0.94 58
#accuracy 0.95 137
|