|
import pandas as pd
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.ensemble import RandomForestClassifier
|
|
from sklearn.metrics import classification_report, confusion_matrix
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
|
|
|
|
data_url = 'https://archive.ics.uci.edu/static/public/15/data.csv'
|
|
|
|
|
|
df = pd.read_csv(data_url)
|
|
|
|
|
|
print("数据集的前几行:")
|
|
print(df.head())
|
|
|
|
|
|
|
|
df['Bare_nuclei'] = df['Bare_nuclei'].replace('?', None).astype(float)
|
|
df = df.dropna()
|
|
|
|
|
|
df['Class'] = df['Class'].map({2: 0, 4: 1})
|
|
|
|
|
|
X = df.drop(columns=['Sample_code_number', 'Class'])
|
|
y = df['Class']
|
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
|
|
|
|
|
model = RandomForestClassifier(random_state=42)
|
|
model.fit(X_train, y_train)
|
|
|
|
|
|
y_pred = model.predict(X_test)
|
|
|
|
|
|
print("\n分类报告:")
|
|
print(classification_report(y_test, y_pred))
|
|
|
|
|
|
cm = confusion_matrix(y_test, y_pred)
|
|
plt.figure(figsize=(8, 6))
|
|
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', xticklabels=['Benign', 'Malignant'], yticklabels=['Benign', 'Malignant'])
|
|
plt.ylabel('Actual')
|
|
plt.xlabel('Predicted')
|
|
plt.title('Confusion Matrix')
|
|
plt.show()
|
|
|
|
|
|
feature_importances = model.feature_importances_
|
|
features = X.columns
|
|
indices = range(len(features))
|
|
|
|
|
|
plt.figure(figsize=(12, 6))
|
|
sns.barplot(x=feature_importances, y=features)
|
|
plt.title('Feature Importance')
|
|
plt.xlabel('Importance')
|
|
plt.ylabel('Feature')
|
|
plt.show()
|
|
|
|
|
|
|
|
from ucimlrepo import fetch_ucirepo
|
|
|
|
|
|
breast_cancer_wisconsin_original = fetch_ucirepo(id=15)
|
|
|
|
|
|
X = breast_cancer_wisconsin_original.data.features
|
|
y = breast_cancer_wisconsin_original.data.targets
|
|
|
|
|
|
print(breast_cancer_wisconsin_original.metadata)
|
|
|
|
|
|
print(breast_cancer_wisconsin_original.variables)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|