|
import pandas as pd
|
|
from ucimlrepo import fetch_ucirepo
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.ensemble import RandomForestRegressor
|
|
import joblib
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
student_performance = fetch_ucirepo(id=320)
|
|
|
|
|
|
X = student_performance.data.features
|
|
y = student_performance.data.targets
|
|
|
|
|
|
print(X.head())
|
|
print(y.head())
|
|
|
|
|
|
X = pd.get_dummies(X, drop_first=True)
|
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y['G3'], test_size=0.2, random_state=42)
|
|
|
|
|
|
model = RandomForestRegressor(n_estimators=100, random_state=42)
|
|
model.fit(X_train, y_train)
|
|
|
|
|
|
model_path = "C:/Users/baby7/Desktop/推理/model_checkpoints/random_forest_model.pkl"
|
|
joblib.dump(model, model_path)
|
|
print(f"模型已保存到 {model_path}")
|
|
|
|
|
|
loaded_model = joblib.load(model_path)
|
|
print("模型已加载")
|
|
|
|
|
|
y_pred = loaded_model.predict(X_test)
|
|
print("预测结果:", y_pred)
|
|
|
|
|
|
from sklearn.metrics import mean_squared_error
|
|
|
|
mse = mean_squared_error(y_test, y_pred)
|
|
print(f'均方误差: {mse:.2f}')
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
plt.scatter(y_test, y_pred)
|
|
plt.xlabel('真实值')
|
|
plt.ylabel('预测值')
|
|
plt.title('真实值与预测值对比')
|
|
plt.plot([0, 20], [0, 20], color='red', linestyle='--')
|
|
plt.show() |