zeroMN commited on
Commit
275b6ec
·
verified ·
1 Parent(s): 8a1d9a4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +50 -76
README.md CHANGED
@@ -31,103 +31,77 @@ model-index:
31
  pipeline_tag: text2text-generation
32
  ---
33
 
34
- Model Name: Evolutionary Multi-Modal Model
35
 
36
- Model Type: Transformer
37
 
38
- License: MIT
39
 
40
- Language: English, Chinese
41
 
42
- Datasets: Custom
 
 
 
 
 
 
 
43
 
44
- Tags:
45
 
46
- Text Generation
 
 
47
 
48
- Code Generation
49
 
50
- Speech Recognition
 
 
51
 
52
- Multi-Modal
 
53
 
54
- Evolutionary
 
 
 
55
 
56
- Base Model: Facebook/BART-Base
 
 
57
 
58
- Finetuned From: GPT-2, BERT-Base-Uncased, Facebook/wav2vec2-base-960h, OpenAI/CLIP-ViT-Base-Patch32
59
 
60
- Dataset: Custom Multi-Modal Dataset
61
 
62
- Metrics
63
- Perplexity
64
 
65
- BLEU
66
 
67
- WER
68
 
69
- CER
70
 
71
- Library Name
72
- Transformers
 
73
 
74
- Pipeline Tag
75
- Text Generation
76
 
77
- Inference Parameters
78
- Max Length: 50
79
 
80
- Top K: 50
 
81
 
82
- Top P: 0.95
 
83
 
84
- Temperature: 1.2
 
 
 
85
 
86
- Do Sample: True
87
-
88
- Speech Recognition
89
- Waveform Path: "C:/Users/baby7/Desktop/权重参数/sample-15s.wav"
90
-
91
- Task: "speech_recognition"
92
-
93
- Output Audio Key: "Transcription"
94
-
95
- Text Generation
96
- Input Text: "What is the future of AI?"
97
-
98
- Task: "text_generation"
99
-
100
- Output Text Key: "Generated Text"
101
-
102
- Code Generation
103
- Input Code: "def add(a, b): return"
104
-
105
- Task: "code_generation"
106
-
107
- Output Code Key: "Generated Code"
108
-
109
- Tests
110
- Name: Speech Recognition Test
111
-
112
- Waveform Path: "C:/Users/baby7/Desktop/权重参数/sample-15s.wav"
113
-
114
- Expected Output: "Expected transcription"
115
-
116
- Name: Text Generation Test
117
-
118
- Input Text: "What is the future of AI?"
119
-
120
- Expected Output: "Predicted text about AI"
121
-
122
- Name: Code Generation Test
123
-
124
- Input Code: "def add(a, b): return"
125
-
126
- Expected Output: "def add(a, b): return a + b"
127
-
128
- Extra Information
129
- Author: Zero
130
-
131
- Version: 1.0
132
-
133
- Description: This Evolutionary Multi-Modal Model is designed for tasks like text generation, code generation, speech recognition, and vision understanding. It leverages the capabilities of multiple pre-trained models and applies evolutionary techniques to optimize performance across these tasks.
 
31
  pipeline_tag: text2text-generation
32
  ---
33
 
34
+ # Model Card for Evolutionary Multi-Modal Model
35
 
36
+ ## Model Details
37
 
38
+ ### Model Description
39
 
40
+ This model, named `Evolutionary Multi-Modal Model`, is a multimodal transformer designed to handle a variety of tasks including vision and audio processing. It is built on top of the `adapter-transformers` and `transformers` libraries and is intended to be a versatile base model for both direct use and fine-tuning.
41
 
42
+ --
43
+ **Developed by:** Independent researcher
44
+ **Funded by :** Self-funded
45
+ **Shared by :** Independent researcher
46
+ **Model type:** MEvolutionary Multi-Modal Model
47
+ **Language(s) (NLP):** English zh
48
+ **License:** Apache-2.0
49
+ **Finetuned from model :** None
50
 
51
+ ### Model Sources
52
 
53
+ - **Repository:** [https://huggingface.co/zeroMN/SG1.0](https://huggingface.co/zeroMN/SG1.0)
54
+ - **Paper:** [Paper Title](https://arxiv.org/abs/your-paper-id) (if applicable)
55
+ - **Demo:** [https://huggingface.co/spaces/zeroMN/zeroMN-SG1.0](https://huggingface.co/spaces/zeroMN/zeroMN-SG1.0) (if applicable)
56
 
57
+ ## Useshttps://huggingface.co/spaces/zeroMN/zeroMN-Evolutionary Multi-Modal Model
58
 
59
+ ### Direct Use
60
+ ```python
61
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
62
 
63
+ model = AutoModelForSeq2SeqLM.from_pretrained("zeroMN/SHMT")
64
+ tokenizer = AutoTokenizer.from_pretrained("zeroMN/SHMT")
65
 
66
+ input_text = "Tell me a joke."
67
+ inputs = tokenizer(input_text, return_tensors="pt")
68
+ outputs = model.generate(**inputs)
69
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
70
 
71
+ print(generated_text)
72
+ ```
73
+ ### Downstream Use
74
 
75
+ The model can be fine-tuned for specific tasks such as visual question answering (VQA), image captioning, and audio recognition. It is particularly useful for multimodal tasks that require understanding both visual and audio inputs.
76
 
77
+ ### Out-of-Scope Use
78
 
79
+ The `Evolutionary Multi-Modal Model` model is not designed for tasks that require highly specialized knowledge or domain-specific expertise beyond its current capabilities. It may not perform well on tasks that require fine-grained recognition or highly specialized audio processing.
 
80
 
81
+ ## Bias, Risks, and Limitations
82
 
83
+ ### Recommendations
84
 
85
+ Users (both direct and downstream) should be made aware of the following risks, biases, and limitations:
86
 
87
+ - **Bias:** The model may exhibit biases present in the training data, particularly if the data is not representative of all populations.
88
+ - **Risks:** The model should not be used in critical applications where high accuracy and reliability are required without thorough testing and validation.
89
+ - **Limitations:** The model may not perform well on tasks that require fine-grained recognition or highly specialized audio processing.
90
 
91
+ ## How to Get Started with the Model
 
92
 
93
+ Use the code below to get started with the `SG1.0.pth` model.
 
94
 
95
+ ```python
96
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
97
 
98
+ model = AutoModelForSeq2SeqLM.from_pretrained("zeroMN/SHMT")
99
+ tokenizer = AutoTokenizer.from_pretrained("zeroMN/SHMT")
100
 
101
+ input_text = "Tell me a joke."
102
+ inputs = tokenizer(input_text, return_tensors="pt")
103
+ outputs = model.generate(**inputs)
104
+ generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
105
 
106
+ print(generated_text)
107
+ ```