Upload 9 files
Browse files- main.py +67 -0
- multi_modal_model.py +172 -0
- requirements.txt +9 -0
main.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import numpy as np
|
5 |
+
import random
|
6 |
+
from transformers import (
|
7 |
+
BartForConditionalGeneration,
|
8 |
+
AutoModelForCausalLM,
|
9 |
+
BertModel,
|
10 |
+
Wav2Vec2Model,
|
11 |
+
CLIPModel,
|
12 |
+
AutoTokenizer
|
13 |
+
)
|
14 |
+
|
15 |
+
class MultiModalModel(nn.Module):
|
16 |
+
def __init__(self):
|
17 |
+
super(MultiModalModel, self).__init__()
|
18 |
+
# 初始化子模型
|
19 |
+
self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
|
20 |
+
self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
|
21 |
+
self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
|
22 |
+
self.speech_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
|
23 |
+
self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
|
24 |
+
|
25 |
+
# 初始化分词器和处理器
|
26 |
+
self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
|
27 |
+
self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
|
28 |
+
self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
29 |
+
self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
|
30 |
+
self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
|
31 |
+
|
32 |
+
def forward(self, task, inputs):
|
33 |
+
if task == 'text_generation':
|
34 |
+
# 确保 attention_mask 在 inputs 中
|
35 |
+
attention_mask = inputs.get('attention_mask')
|
36 |
+
print("输入数据:", inputs)
|
37 |
+
outputs = self.text_generator.generate(
|
38 |
+
inputs['input_ids'],
|
39 |
+
max_new_tokens=100, # 增加生成的最大新令牌数
|
40 |
+
pad_token_id=self.text_tokenizer.eos_token_id,
|
41 |
+
attention_mask=attention_mask,
|
42 |
+
top_p=0.9, # 调整 top_p 值
|
43 |
+
top_k=50, # 保持 top_k 值
|
44 |
+
temperature=0.8, # 调整 temperature 值
|
45 |
+
do_sample=True
|
46 |
+
)
|
47 |
+
print("生成的输出:", outputs)
|
48 |
+
return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
49 |
+
# 根据需要添加其他任务的逻辑...
|
50 |
+
|
51 |
+
# 主函数
|
52 |
+
if __name__ == "__main__":
|
53 |
+
# 初始化模型
|
54 |
+
model = MultiModalModel()
|
55 |
+
|
56 |
+
# 示例任务和输入数据
|
57 |
+
task = "text_generation"
|
58 |
+
input_text = "This is a sample input."
|
59 |
+
tokenizer = model.text_tokenizer
|
60 |
+
inputs = tokenizer(input_text, return_tensors='pt')
|
61 |
+
|
62 |
+
# 添加 attention_mask 键值对
|
63 |
+
inputs['attention_mask'] = torch.ones_like(inputs['input_ids'])
|
64 |
+
|
65 |
+
# 模型推理
|
66 |
+
result = model(task, inputs)
|
67 |
+
print("最终输出结果:", result)
|
multi_modal_model.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.optim as optim
|
5 |
+
from transformers import (
|
6 |
+
BartForConditionalGeneration,
|
7 |
+
AutoModelForCausalLM,
|
8 |
+
BertModel,
|
9 |
+
Wav2Vec2Model,
|
10 |
+
CLIPModel,
|
11 |
+
AutoTokenizer
|
12 |
+
)
|
13 |
+
import numpy as np
|
14 |
+
import random
|
15 |
+
import copy
|
16 |
+
|
17 |
+
class MultiModalModel(nn.Module):
|
18 |
+
def __init__(self):
|
19 |
+
super(MultiModalModel, self).__init__()
|
20 |
+
# 初始化子模型
|
21 |
+
self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
|
22 |
+
self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
|
23 |
+
self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
|
24 |
+
self.speech_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
|
25 |
+
self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
|
26 |
+
|
27 |
+
# 初始化分词器和处理器
|
28 |
+
self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
|
29 |
+
self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
|
30 |
+
self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
31 |
+
self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
|
32 |
+
self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
|
33 |
+
|
34 |
+
def forward(self, task, inputs):
|
35 |
+
if task == 'text_generation':
|
36 |
+
attention_mask = inputs.attention_mask
|
37 |
+
outputs = self.text_generator.generate(
|
38 |
+
inputs.input_ids,
|
39 |
+
max_new_tokens=50,
|
40 |
+
pad_token_id=self.text_tokenizer.eos_token_id,
|
41 |
+
attention_mask=attention_mask,
|
42 |
+
top_p=0.95,
|
43 |
+
top_k=50,
|
44 |
+
temperature=1.2,
|
45 |
+
do_sample=True
|
46 |
+
)
|
47 |
+
return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
48 |
+
elif task == 'code_generation':
|
49 |
+
attention_mask = inputs.attention_mask
|
50 |
+
outputs = self.code_generator.generate(
|
51 |
+
inputs.input_ids,
|
52 |
+
max_new_tokens=50,
|
53 |
+
pad_token_id=self.code_tokenizer.eos_token_id,
|
54 |
+
attention_mask=attention_mask,
|
55 |
+
top_p=0.95,
|
56 |
+
top_k=50,
|
57 |
+
temperature=1.2,
|
58 |
+
do_sample=True
|
59 |
+
)
|
60 |
+
return self.code_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
61 |
+
elif task == 'text_understanding':
|
62 |
+
outputs = self.nlp_encoder(**inputs)
|
63 |
+
return outputs.last_hidden_state
|
64 |
+
elif task == 'speech_recognition':
|
65 |
+
outputs = self.speech_encoder(**inputs).logits
|
66 |
+
predicted_ids = torch.argmax(outputs, dim=-1)
|
67 |
+
transcription = self.speech_processor.batch_decode(predicted_ids)[0]
|
68 |
+
return transcription
|
69 |
+
elif task == 'vision_understanding':
|
70 |
+
outputs = self.vision_encoder.get_image_features(**inputs)
|
71 |
+
return outputs
|
72 |
+
|
73 |
+
def save_model(self, save_directory):
|
74 |
+
os.makedirs(save_directory, exist_ok=True)
|
75 |
+
torch.save(self.state_dict(), os.path.join(save_directory, 'multi_modal_model_state_dict.pth'))
|
76 |
+
self.text_tokenizer.save_pretrained(os.path.join(save_directory, 'text_generator'))
|
77 |
+
self.code_tokenizer.save_pretrained(os.path.join(save_directory, 'code_generator'))
|
78 |
+
self.nlp_tokenizer.save_pretrained(os.path.join(save_directory, 'nlp_encoder'))
|
79 |
+
self.speech_processor.save_pretrained(os.path.join(save_directory, 'speech_encoder'))
|
80 |
+
self.vision_processor.save_pretrained(os.path.join(save_directory, 'vision_encoder'))
|
81 |
+
|
82 |
+
def load_model(self, load_directory):
|
83 |
+
self.load_state_dict(torch.load(os.path.join(load_directory, 'multi_modal_model_state_dict.pth')))
|
84 |
+
self.text_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'text_generator'))
|
85 |
+
self.code_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'code_generator'))
|
86 |
+
self.nlp_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'nlp_encoder'))
|
87 |
+
self.speech_processor = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'speech_encoder'))
|
88 |
+
self.vision_processor = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'vision_encoder'))
|
89 |
+
|
90 |
+
class EvolutionaryMultiModalNetwork(nn.Module):
|
91 |
+
def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
92 |
+
super(EvolutionaryMultiModalNetwork, self).__init__()
|
93 |
+
self.device = device
|
94 |
+
self.multi_modal_model = MultiModalModel().to(self.device)
|
95 |
+
self.mutation_params = {
|
96 |
+
'mutation_rate': 0.2, # 增加变异率
|
97 |
+
'mutation_scale': 0.05 # 增加变异幅度
|
98 |
+
}
|
99 |
+
|
100 |
+
def mutate_model(self, model):
|
101 |
+
"""
|
102 |
+
模型参数变异
|
103 |
+
"""
|
104 |
+
for param in model.parameters():
|
105 |
+
if param.requires_grad:
|
106 |
+
noise = torch.normal(
|
107 |
+
mean=torch.zeros_like(param.data),
|
108 |
+
std=self.mutation_params['mutation_scale']
|
109 |
+
).to(self.device)
|
110 |
+
if random.random() < self.mutation_params['mutation_rate']:
|
111 |
+
param.data.add_(noise)
|
112 |
+
return model
|
113 |
+
|
114 |
+
def evaluate_model(self, model, test_input):
|
115 |
+
"""
|
116 |
+
模型评估
|
117 |
+
"""
|
118 |
+
try:
|
119 |
+
with torch.no_grad():
|
120 |
+
output = model('text_generation', test_input)
|
121 |
+
complexity = sum(p.numel() for p in model.parameters())
|
122 |
+
performance = len(output) # 示例性能评估指标
|
123 |
+
return complexity, performance
|
124 |
+
except Exception as e:
|
125 |
+
print(f"模型评估错误: {e}")
|
126 |
+
return 0, 0
|
127 |
+
|
128 |
+
def save_models(self, save_dir='./model_checkpoints'):
|
129 |
+
"""
|
130 |
+
保存模型
|
131 |
+
"""
|
132 |
+
os.makedirs(save_dir, exist_ok=True)
|
133 |
+
self.multi_modal_model.save_model(os.path.join(save_dir, 'multi_modal_model'))
|
134 |
+
print(f"模型已保存到 {save_dir}")
|
135 |
+
|
136 |
+
def evolutionary_training(self, epochs=5):
|
137 |
+
"""
|
138 |
+
进化训练
|
139 |
+
"""
|
140 |
+
print("🧬 开始进化训练...")
|
141 |
+
|
142 |
+
for epoch in range(epochs):
|
143 |
+
print(f"\n🌟 第 {epoch+1} 代:")
|
144 |
+
|
145 |
+
# 模型变异
|
146 |
+
self.multi_modal_model = self.mutate_model(self.multi_modal_model)
|
147 |
+
|
148 |
+
# 模型评估
|
149 |
+
test_input = self.multi_modal_model.text_tokenizer("Sample input for evaluation.", return_tensors='pt').to(self.device)
|
150 |
+
complexity, performance = self.evaluate_model(self.multi_modal_model, test_input)
|
151 |
+
print(f"多模态模型 - 复杂度: {complexity}, 性能: {performance:.4f}")
|
152 |
+
|
153 |
+
def main():
|
154 |
+
# 设置随机种子
|
155 |
+
torch.manual_seed(42)
|
156 |
+
np.random.seed(42)
|
157 |
+
random.seed(42)
|
158 |
+
|
159 |
+
# 创建进化多模态神经网络
|
160 |
+
evo_network = EvolutionaryMultiModalNetwork()
|
161 |
+
|
162 |
+
# 打印模型信息
|
163 |
+
evo_network.multi_modal_model.text_generator.config # 打印模型配置示例
|
164 |
+
|
165 |
+
# 进化训练
|
166 |
+
evo_network.evolutionary_training(epochs=5)
|
167 |
+
|
168 |
+
# 保存模型
|
169 |
+
evo_network.save_models()
|
170 |
+
|
171 |
+
if __name__ == "__main__":
|
172 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
numpy
|
3 |
+
pandas
|
4 |
+
scikit-learn
|
5 |
+
code_generator
|
6 |
+
nlp_encoder
|
7 |
+
speech_encoder
|
8 |
+
text_generator
|
9 |
+
vision_encoder
|