zeroMN commited on
Commit
cceec1f
·
verified ·
1 Parent(s): 09cbeaa

Upload 9 files

Browse files
Files changed (3) hide show
  1. main.py +67 -0
  2. multi_modal_model.py +172 -0
  3. requirements.txt +9 -0
main.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import torch.nn as nn
4
+ import numpy as np
5
+ import random
6
+ from transformers import (
7
+ BartForConditionalGeneration,
8
+ AutoModelForCausalLM,
9
+ BertModel,
10
+ Wav2Vec2Model,
11
+ CLIPModel,
12
+ AutoTokenizer
13
+ )
14
+
15
+ class MultiModalModel(nn.Module):
16
+ def __init__(self):
17
+ super(MultiModalModel, self).__init__()
18
+ # 初始化子模型
19
+ self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
20
+ self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
21
+ self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
22
+ self.speech_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
23
+ self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
24
+
25
+ # 初始化分词器和处理器
26
+ self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
27
+ self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
28
+ self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
29
+ self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
30
+ self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
31
+
32
+ def forward(self, task, inputs):
33
+ if task == 'text_generation':
34
+ # 确保 attention_mask 在 inputs 中
35
+ attention_mask = inputs.get('attention_mask')
36
+ print("输入数据:", inputs)
37
+ outputs = self.text_generator.generate(
38
+ inputs['input_ids'],
39
+ max_new_tokens=100, # 增加生成的最大新令牌数
40
+ pad_token_id=self.text_tokenizer.eos_token_id,
41
+ attention_mask=attention_mask,
42
+ top_p=0.9, # 调整 top_p 值
43
+ top_k=50, # 保持 top_k 值
44
+ temperature=0.8, # 调整 temperature 值
45
+ do_sample=True
46
+ )
47
+ print("生成的输出:", outputs)
48
+ return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
49
+ # 根据需要添加其他任务的逻辑...
50
+
51
+ # 主函数
52
+ if __name__ == "__main__":
53
+ # 初始化模型
54
+ model = MultiModalModel()
55
+
56
+ # 示例任务和输入数据
57
+ task = "text_generation"
58
+ input_text = "This is a sample input."
59
+ tokenizer = model.text_tokenizer
60
+ inputs = tokenizer(input_text, return_tensors='pt')
61
+
62
+ # 添加 attention_mask 键值对
63
+ inputs['attention_mask'] = torch.ones_like(inputs['input_ids'])
64
+
65
+ # 模型推理
66
+ result = model(task, inputs)
67
+ print("最终输出结果:", result)
multi_modal_model.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.optim as optim
5
+ from transformers import (
6
+ BartForConditionalGeneration,
7
+ AutoModelForCausalLM,
8
+ BertModel,
9
+ Wav2Vec2Model,
10
+ CLIPModel,
11
+ AutoTokenizer
12
+ )
13
+ import numpy as np
14
+ import random
15
+ import copy
16
+
17
+ class MultiModalModel(nn.Module):
18
+ def __init__(self):
19
+ super(MultiModalModel, self).__init__()
20
+ # 初始化子模型
21
+ self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
22
+ self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
23
+ self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
24
+ self.speech_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h')
25
+ self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
26
+
27
+ # 初始化分词器和处理器
28
+ self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
29
+ self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
30
+ self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
31
+ self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
32
+ self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
33
+
34
+ def forward(self, task, inputs):
35
+ if task == 'text_generation':
36
+ attention_mask = inputs.attention_mask
37
+ outputs = self.text_generator.generate(
38
+ inputs.input_ids,
39
+ max_new_tokens=50,
40
+ pad_token_id=self.text_tokenizer.eos_token_id,
41
+ attention_mask=attention_mask,
42
+ top_p=0.95,
43
+ top_k=50,
44
+ temperature=1.2,
45
+ do_sample=True
46
+ )
47
+ return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
48
+ elif task == 'code_generation':
49
+ attention_mask = inputs.attention_mask
50
+ outputs = self.code_generator.generate(
51
+ inputs.input_ids,
52
+ max_new_tokens=50,
53
+ pad_token_id=self.code_tokenizer.eos_token_id,
54
+ attention_mask=attention_mask,
55
+ top_p=0.95,
56
+ top_k=50,
57
+ temperature=1.2,
58
+ do_sample=True
59
+ )
60
+ return self.code_tokenizer.decode(outputs[0], skip_special_tokens=True)
61
+ elif task == 'text_understanding':
62
+ outputs = self.nlp_encoder(**inputs)
63
+ return outputs.last_hidden_state
64
+ elif task == 'speech_recognition':
65
+ outputs = self.speech_encoder(**inputs).logits
66
+ predicted_ids = torch.argmax(outputs, dim=-1)
67
+ transcription = self.speech_processor.batch_decode(predicted_ids)[0]
68
+ return transcription
69
+ elif task == 'vision_understanding':
70
+ outputs = self.vision_encoder.get_image_features(**inputs)
71
+ return outputs
72
+
73
+ def save_model(self, save_directory):
74
+ os.makedirs(save_directory, exist_ok=True)
75
+ torch.save(self.state_dict(), os.path.join(save_directory, 'multi_modal_model_state_dict.pth'))
76
+ self.text_tokenizer.save_pretrained(os.path.join(save_directory, 'text_generator'))
77
+ self.code_tokenizer.save_pretrained(os.path.join(save_directory, 'code_generator'))
78
+ self.nlp_tokenizer.save_pretrained(os.path.join(save_directory, 'nlp_encoder'))
79
+ self.speech_processor.save_pretrained(os.path.join(save_directory, 'speech_encoder'))
80
+ self.vision_processor.save_pretrained(os.path.join(save_directory, 'vision_encoder'))
81
+
82
+ def load_model(self, load_directory):
83
+ self.load_state_dict(torch.load(os.path.join(load_directory, 'multi_modal_model_state_dict.pth')))
84
+ self.text_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'text_generator'))
85
+ self.code_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'code_generator'))
86
+ self.nlp_tokenizer = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'nlp_encoder'))
87
+ self.speech_processor = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'speech_encoder'))
88
+ self.vision_processor = AutoTokenizer.from_pretrained(os.path.join(load_directory, 'vision_encoder'))
89
+
90
+ class EvolutionaryMultiModalNetwork(nn.Module):
91
+ def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
92
+ super(EvolutionaryMultiModalNetwork, self).__init__()
93
+ self.device = device
94
+ self.multi_modal_model = MultiModalModel().to(self.device)
95
+ self.mutation_params = {
96
+ 'mutation_rate': 0.2, # 增加变异率
97
+ 'mutation_scale': 0.05 # 增加变异幅度
98
+ }
99
+
100
+ def mutate_model(self, model):
101
+ """
102
+ 模型参数变异
103
+ """
104
+ for param in model.parameters():
105
+ if param.requires_grad:
106
+ noise = torch.normal(
107
+ mean=torch.zeros_like(param.data),
108
+ std=self.mutation_params['mutation_scale']
109
+ ).to(self.device)
110
+ if random.random() < self.mutation_params['mutation_rate']:
111
+ param.data.add_(noise)
112
+ return model
113
+
114
+ def evaluate_model(self, model, test_input):
115
+ """
116
+ 模型评估
117
+ """
118
+ try:
119
+ with torch.no_grad():
120
+ output = model('text_generation', test_input)
121
+ complexity = sum(p.numel() for p in model.parameters())
122
+ performance = len(output) # 示例性能评估指标
123
+ return complexity, performance
124
+ except Exception as e:
125
+ print(f"模型评估错误: {e}")
126
+ return 0, 0
127
+
128
+ def save_models(self, save_dir='./model_checkpoints'):
129
+ """
130
+ 保存模型
131
+ """
132
+ os.makedirs(save_dir, exist_ok=True)
133
+ self.multi_modal_model.save_model(os.path.join(save_dir, 'multi_modal_model'))
134
+ print(f"模型已保存到 {save_dir}")
135
+
136
+ def evolutionary_training(self, epochs=5):
137
+ """
138
+ 进化训练
139
+ """
140
+ print("🧬 开始进化训练...")
141
+
142
+ for epoch in range(epochs):
143
+ print(f"\n🌟 第 {epoch+1} 代:")
144
+
145
+ # 模型变异
146
+ self.multi_modal_model = self.mutate_model(self.multi_modal_model)
147
+
148
+ # 模型评估
149
+ test_input = self.multi_modal_model.text_tokenizer("Sample input for evaluation.", return_tensors='pt').to(self.device)
150
+ complexity, performance = self.evaluate_model(self.multi_modal_model, test_input)
151
+ print(f"多模态模型 - 复杂度: {complexity}, 性能: {performance:.4f}")
152
+
153
+ def main():
154
+ # 设置随机种子
155
+ torch.manual_seed(42)
156
+ np.random.seed(42)
157
+ random.seed(42)
158
+
159
+ # 创建进化多模态神经网络
160
+ evo_network = EvolutionaryMultiModalNetwork()
161
+
162
+ # 打印模型信息
163
+ evo_network.multi_modal_model.text_generator.config # 打印模型配置示例
164
+
165
+ # 进化训练
166
+ evo_network.evolutionary_training(epochs=5)
167
+
168
+ # 保存模型
169
+ evo_network.save_models()
170
+
171
+ if __name__ == "__main__":
172
+ main()
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ torch
2
+ numpy
3
+ pandas
4
+ scikit-learn
5
+ code_generator
6
+ nlp_encoder
7
+ speech_encoder
8
+ text_generator
9
+ vision_encoder