File size: 5,128 Bytes
796d2eb
 
 
 
 
 
 
 
 
9e25bf7
796d2eb
4cfb2d7
796d2eb
 
 
a918683
796d2eb
868e352
796d2eb
 
 
 
 
9e25bf7
796d2eb
 
 
 
 
 
 
 
 
d96f0c2
 
796d2eb
 
 
 
1551388
796d2eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e25bf7
796d2eb
 
868e352
796d2eb
9e25bf7
 
 
 
 
 
 
 
d96f0c2
 
796d2eb
 
 
 
 
 
 
 
 
 
 
 
 
a918683
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---
license: mit
pipeline_tag: text-generation
tags:
- ocean
- text-generation-inference
- oceangpt
language:
- en
- zh
datasets:
- zjunlp/OceanInstruct
---

<div align="center">
<img src="logo.jpg" width="300px">

**OceanGPT(沧渊): A Large Language Model for Ocean Science Tasks**

<p align="center">
  <a href="https://github.com/zjunlp/OceanGPT">Project</a><a href="https://arxiv.org/abs/2310.02031">Paper</a><a href="https://huggingface.co/collections/zjunlp/oceangpt-664cc106358fdd9f09aa5157">Models</a><a href="http://oceangpt.zjukg.cn/">Web</a><a href="#quickstart">Quickstart</a><a href="#citation">Citation</a>
</p>


</div>

OceanGPT-14B-v0.1 is based on Qwen1.5-14B and has been trained on a bilingual dataset in the ocean domain, covering both Chinese and English.

-**Disclaimer: This project is purely an academic exploration rather than a product. Please be aware that due to the inherent limitations of large language models, there may be issues such as hallucinations.**


## ⏩Quickstart
### Download the model

Download the model: [OceanGPT-14B-v0.1](https://huggingface.co/zjunlp/OceanGPT-14B-v0.1)  

```shell
git lfs install
git clone https://huggingface.co/zjunlp/OceanGPT-14B-v0.1
```
or
```
huggingface-cli download --resume-download zjunlp/OceanGPT-14B-v0.1 --local-dir OceanGPT-14B-v0.1 --local-dir-use-symlinks False
```
### Inference

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
device = "cuda" # the device to load the model onto
path = 'YOUR-MODEL-PATH'
model = AutoModelForCausalLM.from_pretrained(
    path,
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(path)

prompt = "Which is the largest ocean in the world?"
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```

## 📌Models

| Model Name        | HuggingFace                                                          | WiseModel                                                                 | ModelScope                                                                |
|-------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| OceanGPT-14B-v0.1 (based on Qwen) | <a href="https://huggingface.co/zjunlp/OceanGPT-14B-v0.1" target="_blank">14B</a> | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-14B-v0.1" target="_blank">14B</a> | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-14B-v0.1" target="_blank">14B</a> |
| OceanGPT-7B-v0.2 (based on Qwen) | <a href="https://huggingface.co/zjunlp/OceanGPT-7b-v0.2" target="_blank">7B</a>   | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-7b-v0.2" target="_blank">7B</a>   | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-7b-v0.2" target="_blank">7B</a>   |
| OceanGPT-2B-v0.1 (based on MiniCPM) | <a href="https://huggingface.co/zjunlp/OceanGPT-2B-v0.1" target="_blank">2B</a>   | <a href="https://wisemodel.cn/models/zjunlp/OceanGPT-2b-v0.1" target="_blank">2B</a>   | <a href="https://modelscope.cn/models/ZJUNLP/OceanGPT-2B-v0.1" target="_blank">2B</a>   |
 
## 🌻Acknowledgement

OceanGPT(沧渊) is trained based on the open-sourced large language models including [Qwen](https://huggingface.co/Qwen), [MiniCPM](https://huggingface.co/collections/openbmb/minicpm-2b-65d48bf958302b9fd25b698f), [LLaMA](https://huggingface.co/meta-llama). Thanks for their great contributions!

## Limitations

- The model may have hallucination issues.

- We did not optimize the identity and the model may generate identity information similar to that of Qwen/MiniCPM/LLaMA/GPT series models.

- The model's output is influenced by prompt tokens, which may result in inconsistent results across multiple attempts.  

- The model requires the inclusion of specific simulator code instructions for training in order to possess simulated embodied intelligence capabilities (the simulator is subject to copyright restrictions and cannot be made available for now), and its current capabilities are quite limited.


### 🚩Citation

Please cite the following paper if you use OceanGPT in your work.

```bibtex
@article{bi2023oceangpt,
  title={OceanGPT: A Large Language Model for Ocean Science Tasks},
  author={Bi, Zhen and Zhang, Ningyu and Xue, Yida and Ou, Yixin and Ji, Daxiong and Zheng, Guozhou and Chen, Huajun},
  journal={arXiv preprint arXiv:2310.02031},
  year={2023}
}

```