File size: 2,141 Bytes
219b525 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: 3-10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000-finetuned-spiderTraining100-1000
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 3-10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000-finetuned-spiderTraining100-1000
This model is a fine-tuned version of [zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000](https://huggingface.co/zkdeng/10-convnextv2-base-22k-384-finetuned-spiderTraining1000-1000) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1305
- Accuracy: 0.9623
- Precision: 0.9628
- Recall: 0.9625
- F1: 0.9623
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 27
- eval_batch_size: 27
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 108
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
| 0.558 | 1.0 | 740 | 0.2587 | 0.9239 | 0.9277 | 0.9235 | 0.9238 |
| 0.4179 | 2.0 | 1481 | 0.1747 | 0.9482 | 0.9493 | 0.9488 | 0.9483 |
| 0.3482 | 3.0 | 2220 | 0.1305 | 0.9623 | 0.9628 | 0.9625 | 0.9623 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
|