File size: 10,177 Bytes
fdffa5f
f168954
fdffa5f
 
 
 
 
 
 
9691e52
1c55642
 
 
 
 
 
fdffa5f
329bec2
ef40418
986db96
329bec2
ef40418
329bec2
986db96
74f2202
 
329bec2
ef40418
329bec2
 
 
 
 
 
 
fb56dd6
329bec2
986db96
74f2202
 
 
 
 
 
 
329bec2
 
 
ef40418
329bec2
ef40418
 
 
 
329bec2
ef40418
329bec2
ef40418
329bec2
 
 
 
 
 
 
6e5ca22
74f2202
 
329bec2
6e5ca22
74f2202
6e5ca22
329bec2
 
 
 
6e5ca22
90eecca
329bec2
986db96
 
 
 
 
 
 
 
 
74f2202
b380cb9
329bec2
90eecca
329bec2
 
90eecca
 
329bec2
90eecca
329bec2
 
 
 
 
 
 
 
b380cb9
ef40418
329bec2
ef40418
 
 
 
 
74f2202
90eecca
329bec2
90eecca
329bec2
 
 
90eecca
 
329bec2
90eecca
329bec2
 
 
 
 
90eecca
329bec2
 
90eecca
329bec2
90eecca
329bec2
 
 
90eecca
 
329bec2
90eecca
329bec2
 
 
 
 
90eecca
329bec2
 
90eecca
329bec2
90eecca
329bec2
 
90eecca
 
329bec2
90eecca
329bec2
 
 
 
 
90eecca
329bec2
 
90eecca
ef40418
5d5ccc8
ef40418
5d5ccc8
 
 
ef40418
 
74f2202
90eecca
329bec2
 
 
 
 
90eecca
329bec2
 
90eecca
329bec2
90eecca
329bec2
 
 
90eecca
329bec2
 
 
 
 
 
 
 
90eecca
 
329bec2
90eecca
329bec2
 
 
 
 
 
 
 
90eecca
 
 
 
d711b20
329bec2
90eecca
 
 
74f2202
90eecca
329bec2
 
 
 
 
 
90eecca
 
 
329bec2
90eecca
 
329bec2
90eecca
 
329bec2
 
 
 
 
 
 
 
90eecca
 
329bec2
 
90eecca
 
329bec2
 
 
 
 
 
 
90eecca
 
329bec2
90eecca
 
329bec2
90eecca
 
329bec2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810b5d
329bec2
 
0d53b1d
 
 
 
329bec2
 
1810b5d
 
 
329bec2
1810b5d
329bec2
ef40418
329bec2
ef40418
329bec2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
---
inference: false
license: mit
language:
- en
metrics:
- exact_match
- f1
- bertscore
pipeline_tag: text-classification
tags:
  - question-answering
  - evaluation
  - text
datasets:
  - zli12321/pedants_qa_evaluation_bench
---
# QA-Evaluation-Metrics πŸ“Š

[![PyPI version qa-metrics](https://img.shields.io/pypi/v/qa-metrics.svg)](https://pypi.org/project/qa-metrics/) 
[![Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1Ke23KIeHFdPWad0BModmcWKZ6jSbF5nI?usp=sharing)

> A fast and lightweight Python package for evaluating question-answering models and prompting of black-box and open-source large language models.

> `pip install qa-metrics` is all you need!

## πŸŽ‰ Latest Updates

- **Version 0.2.19 Released!**
  - Paper accepted to EMNLP 2024 Findings! πŸŽ“
  - Enhanced PEDANTS with multi-pipeline support and improved edge case handling
  - Added support for OpenAI GPT-series and Claude Series models (OpenAI version > 1.0)
  - Integrated support for open-source models (LLaMA-2-70B-chat, LLaVA-1.5, etc.) via [deepinfra](https://deepinfra.com/models)
  - Introduced trained tiny-bert for QA evaluation (18MB model size)
  - Added direct Huggingface model download support for TransformerMatcher

## πŸš€ Quick Start

## Table of Contents
* 1. [Normalized Exact Match](#em)
* 2. [Token F1 Score](#f1)
* 3. [PEDANTS](#pedants)
* 4. [Finetuned Neural Matching](#neural)
* 5. [Prompting LLM](#llm)

### Prerequisites
- Python >= 3.6
- openai >= 1.0

### Installation
```bash
pip install qa-metrics
```

## πŸ’‘ Features

Our package offers six QA evaluation methods with varying strengths:

| Method | Best For | Cost | Correlation with Human Judgment |
|--------|----------|------|--------------------------------|
| Normalized Exact Match | Short-form QA (NQ-OPEN, HotpotQA, etc.) | Free | Good |
| PEDANTS | Both short & medium-form QA | Free | Very High |
| [Neural Evaluation](https://huggingface.co/zli12321/answer_equivalence_tiny_bert) | Both short & long-form QA | Free | High |
| [Open Source LLM Evaluation](https://huggingface.co/zli12321/prometheus2-2B) | All QA types | Free | High |
| Black-box LLM Evaluation | All QA types | Paid | Highest |



## πŸ“– Documentation

### 1. <a name='em'></a>Normalized Exact Match

#### Method: `em_match`
**Parameters**
- `reference_answer` (list of str): A list of gold (correct) answers to the question
- `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated

**Returns**
- `boolean`: True if there are any exact normalized matches between gold and candidate answers

```python
from qa_metrics.em import em_match

reference_answer = ["The Frog Prince", "The Princess and the Frog"]
candidate_answer = "The movie \"The Princess and the Frog\" is loosely based off the Brother Grimm's \"Iron Henry\""
match_result = em_match(reference_answer, candidate_answer)
```

### 2. <a name='f1'></a>F1 Score

#### Method: `f1_score_with_precision_recall`
**Parameters**
- `reference_answer` (str): A gold (correct) answer to the question
- `candidate_answer` (str): The answer provided by a candidate that needs to be evaluated

**Returns**
- `dictionary`: Contains the F1 score, precision, and recall between a gold and candidate answer

#### Method: `f1_match`
**Parameters**
- `reference_answer` (list of str): List of gold answers
- `candidate_answer` (str): Candidate answer to evaluate
- `threshold` (float): F1 score threshold for considering a match (default: 0.5)

**Returns**
- `boolean`: True if F1 score exceeds threshold for any gold answer

```python
from qa_metrics.f1 import f1_match, f1_score_with_precision_recall

f1_stats = f1_score_with_precision_recall(reference_answer[0], candidate_answer)
match_result = f1_match(reference_answer, candidate_answer, threshold=0.5)
```

### 3. <a name='pedants'></a>PEDANTS

#### Method: `get_score`
**Parameters**
- `reference_answer` (str): A Gold answer
- `candidate_answer` (str): Candidate answer to evaluate
- `question` (str): The question being evaluated

**Returns**
- `float`: The similarity score between two strings (0 to 1)

#### Method: `get_highest_score`
**Parameters**
- `reference_answer` (list of str): List of gold answers
- `candidate_answer` (str): Candidate answer to evaluate
- `question` (str): The question being evaluated

**Returns**
- `dictionary`: Contains the gold answer and candidate answer pair with highest matching score

#### Method: `get_scores`
**Parameters**
- `reference_answer` (list of str): List of gold answers
- `candidate_answer` (str): Candidate answer to evaluate
- `question` (str): The question being evaluated

**Returns**
- `dictionary`: Contains matching scores for all gold answer and candidate answer pairs

#### Method: `evaluate`
**Parameters**
- `reference_answer` (list of str): List of gold answers
- `candidate_answer` (str): Candidate answer to evaluate
- `question` (str): The question being evaluated

**Returns**
- `boolean`: True if candidate answer matches any gold answer

#### Method: `get_question_type`
**Parameters**
- `reference_answer` (list of str): List of gold answers
- `question` (str): The question being evaluated

**Returns**
- `list`: The type of the question (what, who, when, how, why, which, where)

#### Method: `get_judgement_type`
**Parameters**
- `reference_answer` (list of str): List of gold answers
- `candidate_answer` (str): Candidate answer to evaluate
- `question` (str): The question being evaluated

**Returns**
- `list`: A list revised rules applicable to judge answer correctness

```python
from qa_metrics.pedant import PEDANT

pedant = PEDANT()
scores = pedant.get_scores(reference_answer, candidate_answer, question)
match_result = pedant.evaluate(reference_answer, candidate_answer, question)
```

### 4. <a name='neural'></a>Transformer Neural Evaluation

#### Method: `get_score`
**Parameters**
- `reference_answer` (str): A Gold answer
- `candidate_answer` (str): Candidate answer to evaluate
- `question` (str): The question being evaluated

**Returns**
- `float`: The similarity score between two strings (0 to 1)

#### Method: `get_highest_score`
**Parameters**
- `reference_answer` (list of str): List of gold answers
- `candidate_answer` (str): Candidate answer to evaluate
- `question` (str): The question being evaluated

**Returns**
- `dictionary`: Contains the gold answer and candidate answer pair with highest matching score

#### Method: `get_scores`
**Parameters**
- `reference_answer` (list of str): List of gold answers
- `candidate_answer` (str): Candidate answer to evaluate
- `question` (str): The question being evaluated

**Returns**
- `dictionary`: Contains matching scores for all gold answer and candidate answer pairs

#### Method: `transformer_match`
**Parameters**
- `reference_answer` (list of str): List of gold answers
- `candidate_answer` (str): Candidate answer to evaluate
- `question` (str): The question being evaluated

**Returns**
- `boolean`: True if transformer model considers candidate answer equivalent to any gold answer

```python
from qa_metrics.transformerMatcher import TransformerMatcher

### supports `zli12321/roberta-large-qa-evaluator`, `zli12321/answer_equivalence_bert`, `zli12321/answer_equivalence_distilbert`, `zli12321/answer_equivalence_roberta`, `zli12321/answer_equivalence_distilroberta`
tm = TransformerMatcher("zli12321/answer_equivalence_tiny_bert")
match_result = tm.transformer_match(reference_answer, candidate_answer, question)
```

### 5. <a name='llm'></a>LLM Integration

#### Method: `prompt_gpt`
**Parameters**
- `prompt` (str): The input prompt text
- `model_engine` (str): OpenAI model to use (e.g., 'gpt-3.5-turbo')
- `temperature` (float): Controls randomness (0-1)
- `max_tokens` (int): Maximum tokens in response

```python
from qa_metrics.prompt_llm import CloseLLM

model = CloseLLM()
model.set_openai_api_key(YOUR_OPENAI_KEY)
result = model.prompt_gpt(prompt=prompt, model_engine='gpt-3.5-turbo')
```

#### Method: `prompt_claude`
**Parameters**
- `prompt` (str): The input prompt text
- `model_engine` (str): Claude model to use
- `anthropic_version` (str): API version
- `max_tokens_to_sample` (int): Maximum tokens in response
- `temperature` (float): Controls randomness (0-1)

```python
model = CloseLLM()
model.set_anthropic_api_key(YOUR_ANTHROPIC_KEY)
result = model.prompt_claude(prompt=prompt, model_engine='claude-v1')
```

#### Method: `prompt`
**Parameters**
- `message` (str): The input message text
- `model_engine` (str): Model to use
- `temperature` (float): Controls randomness (0-1)
- `max_tokens` (int): Maximum tokens in response

```python
from qa_metrics.prompt_open_llm import OpenLLM

model = OpenLLM()
model.set_deepinfra_key(YOUR_DEEPINFRA_KEY)
result = model.prompt(message=prompt, model_engine='mistralai/Mixtral-8x7B-Instruct-v0.1')
```

## πŸ€— Model Hub

Our fine-tuned models are available on Huggingface:
- [BERT](https://huggingface.co/Zongxia/answer_equivalence_bert)
- [DistilRoBERTa](https://huggingface.co/Zongxia/answer_equivalence_distilroberta)
- [DistilBERT](https://huggingface.co/Zongxia/answer_equivalence_distilbert)
- [RoBERTa](https://huggingface.co/Zongxia/answer_equivalence_roberta)
- [Tiny-BERT](https://huggingface.co/Zongxia/answer_equivalence_tiny_bert)
- [RoBERTa-Large](https://huggingface.co/Zongxia/answer_equivalence_roberta-large)

## πŸ“š Resources

- [Full Paper](https://arxiv.org/abs/2402.11161)
- [Dataset Repository](https://github.com/zli12321/Answer_Equivalence_Dataset.git)
- [Supported Models on Deepinfra](https://deepinfra.com/models)

## πŸ“„ Citation

```bibtex
@misc{li2024pedantspreciseevaluationsdiverse,
      title={PEDANTS: Cheap but Effective and Interpretable Answer Equivalence}, 
      author={Zongxia Li and Ishani Mondal and Yijun Liang and Huy Nghiem and Jordan Lee Boyd-Graber},
      year={2024},
      eprint={2402.11161},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2402.11161}, 
}
```

## πŸ“ License

This project is licensed under the [MIT License](LICENSE.md).

## πŸ“¬ Contact

For questions or comments, please contact: [email protected]