Yi-Coder-9B / README.md
Mia01ai's picture
Update README.md
3e7530d verified
|
raw
history blame
4.59 kB
metadata
license: apache-2.0

πŸ™ GitHub β€’ πŸ‘Ύ Discord β€’ 🐀 Twitter β€’ πŸ’¬ WeChat
πŸ“ Paper β€’ πŸ’ͺ Tech Blog β€’ πŸ™Œ FAQ β€’ πŸ“— Learning Hub

Intro

Yi-Coder is a series of open-source code language models that delivers state-of-the-art coding performance with fewer than 10 billion parameters.

Key features:

  • Excelling in long-context understanding with a maximum context length of 128K tokens.
  • Supporting 52 major programming languages, including popular ones such as Java, Python, JavaScript, and C++.

For model details and benchmarks, see Yi-Coder blog and Yi-Coder README.

demo1

Models

Name Type Download
Yi-Coder-9B-Chat Chat πŸ€— Hugging Face β€’ πŸ€– ModelScope β€’ 🟣 wisemodel
Yi-Coder-1.5B-Chat Chat πŸ€— Hugging Face β€’ πŸ€– ModelScope β€’ 🟣 wisemodel
Yi-Coder-9B Base πŸ€— Hugging Face β€’ πŸ€– ModelScope β€’ 🟣 wisemodel
Yi-Coder-1.5B Base πŸ€— Hugging Face β€’ πŸ€– ModelScope β€’ 🟣 wisemodel

Benchmarks

As illustrated in the figure below, Yi-Coder-9B-Chat achieved an impressive 23% pass rate in LiveCodeBench, making it the only model with under 10B parameters to surpass 20%. It also outperforms DeepSeekCoder-33B-Ins at 22.3%, CodeGeex4-9B-all at 17.8%, CodeLLama-34B-Ins at 13.3%, and CodeQwen1.5-7B-Chat at 12%.

download1

Quick Start

You can use transformers to run inference with Yi-Coder models (both chat and base versions) as follows:

from transformers import AutoTokenizer, AutoModelForCausalLM

device = "cuda" # the device to load the model onto
model_path = "01-ai/Yi-Coder-9B-Chat"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval()

prompt = "Write a quick sort algorithm."
messages = [
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

generated_ids = model.generate(
    model_inputs.input_ids,
    max_new_tokens=1024,
    eos_token_id=tokenizer.eos_token_id  
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)

For getting up and running with Yi-Coder series models quickly, see Yi-Coder README.