|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- AIDC-AI/Ovis-dataset |
|
library_name: transformers |
|
tags: |
|
- MLLM |
|
pipeline_tag: image-text-to-text |
|
--- |
|
|
|
## Introduction |
|
Ovis is a novel Multimodal Large Language Model (MLLM) architecture, designed to structurally align visual and textual embeddings. For a comprehensive introduction, please refer to [Ovis paper](https://arxiv.org/abs/2405.20797) and [Ovis GitHub](https://github.com/AIDC-AI/Ovis). |
|
|
|
<div align="center"> |
|
<img src="https://cdn-uploads.huggingface.co/production/uploads/658a8a837959448ef5500ce5/TIlymOb86R6_Mez3bpmcB.png" width="100%" /> |
|
</div> |
|
|
|
## Model |
|
As always, Ovis1.5 remains fully open-source: we release the [training datasets](https://huggingface.co/datasets/AIDC-AI/Ovis-dataset), [training & inference codes](https://github.com/AIDC-AI/Ovis), and [model weights](https://huggingface.co/AIDC-AI/Ovis1.5-Llama3-8B) for **reproducible transparency** and community collaboration. |
|
|
|
| | MiniCPM-Llama3-V2.5 | Ovis1.5-Llama3-8B | |
|
|:------------------|-------------------------------------------------------------------:|-------------------------------------------------------------------:| |
|
| Training scripts | - | [Github](https://github.com/AIDC-AI/Ovis/tree/main/scripts/v1_5) | |
|
| ViT | Siglip-400M | Siglip-400M | |
|
| LLM | Llama3-8B-Instruct | Llama3-8B-Instruct | |
|
| MMTBench-VAL | 57.6 | **60.7** | |
|
| MMBench-EN-V1.1 | 74 | **78.2** | |
|
| MMBench-CN-V1.1 | 70.1 | **75.2** | |
|
| MMStar | 51.8 | **57.2** | |
|
| MMMU-Val | 45.8 | **48.6** | |
|
| MathVista-Mini | 54.3 | **62.4** | |
|
| HallusionBenchAvg | 42.4 | **44.5** | |
|
| AI2D | 78.4 | **82.5** | |
|
| OCRBench | 725 | **743** | |
|
| MMVet | **52.8** | 52.2 | |
|
| RealWorldQA | 63.5 | **64.6** | |
|
|
|
## Usage |
|
Below is a code snippet to run Ovis with multimodal inputs. For additional usage instructions, including inference wrapper and Gradio UI, please refer to [Ovis GitHub](https://github.com/AIDC-AI/Ovis?tab=readme-ov-file#inference). |
|
```bash |
|
pip install torch==2.1.0 transformers==4.42.4 deepspeed==0.14.0 pillow==10.3.0 |
|
``` |
|
```python |
|
import torch |
|
from PIL import Image |
|
from transformers import AutoModelForCausalLM |
|
|
|
# load model |
|
model = AutoModelForCausalLM.from_pretrained("AIDC-AI/Ovis1.5-Llama3-8B", |
|
torch_dtype=torch.bfloat16, |
|
multimodal_max_length=8192, |
|
trust_remote_code=True).cuda() |
|
text_tokenizer = model.get_text_tokenizer() |
|
visual_tokenizer = model.get_visual_tokenizer() |
|
conversation_formatter = model.get_conversation_formatter() |
|
|
|
# enter image path and prompt |
|
image_path = input("Enter image path: ") |
|
image = Image.open(image_path) |
|
text = input("Enter prompt: ") |
|
query = f'<image>\n{text}' |
|
prompt, input_ids = conversation_formatter.format_query(query) |
|
input_ids = torch.unsqueeze(input_ids, dim=0).to(device=model.device) |
|
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id).to(device=model.device) |
|
pixel_values = [visual_tokenizer.preprocess_image(image).to( |
|
dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)] |
|
|
|
# generate output |
|
with torch.inference_mode(): |
|
gen_kwargs = dict( |
|
max_new_tokens=1024, |
|
do_sample=False, |
|
top_p=None, |
|
top_k=None, |
|
temperature=None, |
|
repetition_penalty=None, |
|
eos_token_id=model.generation_config.eos_token_id, |
|
pad_token_id=text_tokenizer.pad_token_id, |
|
use_cache=True |
|
) |
|
output_ids = model.generate(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, **gen_kwargs)[0] |
|
output = text_tokenizer.decode(output_ids, skip_special_tokens=True) |
|
print(f'Output: {output}') |
|
``` |
|
|
|
## Citation |
|
If you find Ovis useful, please cite the paper |
|
``` |
|
@article{lu2024ovis, |
|
title={Ovis: Structural Embedding Alignment for Multimodal Large Language Model}, |
|
author={Shiyin Lu and Yang Li and Qing-Guo Chen and Zhao Xu and Weihua Luo and Kaifu Zhang and Han-Jia Ye}, |
|
year={2024}, |
|
journal={arXiv:2405.20797} |
|
} |
|
``` |
|
|
|
## License |
|
The project is licensed under the Apache 2.0 License and is restricted to uses that comply with the license agreements of Qwen, Llama3, Clip, and Siglip. |