ElEmperador / README.md
AINovice2005's picture
Update README.md
bf10ea8 verified
|
raw
history blame
1.91 kB
metadata
license: apache-2.0
datasets:
  - argilla/ultrafeedback-binarized-preferences-cleaned
language:
  - en
base_model:
  - mistralai/Mistral-7B-v0.1
library_name: transformers
tags:
  - transformers

ElEmperador

image/png

Introduction:

ElEmperador is an ORPO-based finetinue derived from the Mistral-7B-v0.1 base model.

The argilla/ultrafeedback-binarized-preferences-cleaned dataset was used for training, albeit a small portion was used due to GPU constraints.

Evals:

BLEU:0.209

Inference Script:

def generate_response(model_name, input_text, max_new_tokens=50):
    # Load the tokenizer and model from Hugging Face Hub
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    
    # Tokenize the input text
    input_ids = tokenizer(input_text, return_tensors='pt').input_ids
    
    # Generate a response using the model
    with torch.no_grad():
        generated_ids = model.generate(input_ids, max_new_tokens=max_new_tokens)
    
    # Decode the generated tokens into text
    generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
    
    return generated_text

if __name__ == "__main__":
    # Set the model name from Hugging Face Hub
    model_name = "AINovice2005/ElEmperador" 
    input_text = "Hello, how are you?"

    # Generate and print the model's response
    output = generate_response(model_name, input_text)
    
    print(f"Input: {input_text}")
    print(f"Output: {output}")

Results

ORPO is a viable RLHF algorithm to improve the performance of your models along with SFT finetuning. It also helps in aligning the model’s outputs more closely with human preferences, leading to more user-friendly and acceptable results.