|
--- |
|
tags: |
|
- dna |
|
- human_genome |
|
--- |
|
|
|
# GENA-LM (gena-lm-bigbird-base-sparse-t2t) |
|
|
|
GENA-LM is a Family of Open-Source Foundational Models for Long DNA Sequences. |
|
|
|
GENA-LM models are transformer masked language models trained on human DNA sequence. |
|
|
|
`gena-lm-bigbird-base-sparse-t2t` follows the BigBird architecture and uses sparse attention from DeepSpeed. |
|
|
|
Differences between GENA-LM (`gena-lm-bigbird-base-sparse-t2t`) and DNABERT: |
|
- BPE tokenization instead of k-mers; |
|
- input sequence size is about 36000 nucleotides (4096 BPE tokens) compared to 512 nucleotides of DNABERT; |
|
- pre-training on T2T vs. GRCh38.p13 human genome assembly. |
|
|
|
Source code and data: https://github.com/AIRI-Institute/GENA_LM |
|
|
|
Paper: https://academic.oup.com/nar/article/53/2/gkae1310/7954523 |
|
|
|
## Installation |
|
`gena-lm-bigbird-base-sparse-t2t` sparse ops require DeepSpeed. |
|
|
|
### DeepSpeed |
|
DeepSpeed installation is needed to work with SparseAttention versions of language models. DeepSpeed Sparse attention supports only GPUs with compute compatibility >= 7 (V100, T4, A100). |
|
```bash |
|
pip install triton==1.0.0 |
|
DS_BUILD_SPARSE_ATTN=1 pip install deepspeed==0.6.0 --global-option="build_ext" --global-option="-j8" --no-cache |
|
``` |
|
and check installation with |
|
```bash |
|
ds_report |
|
``` |
|
|
|
### APEX for FP16 |
|
Install APEX https://github.com/NVIDIA/apex#quick-start |
|
``` |
|
git clone https://github.com/NVIDIA/apex |
|
cd apex |
|
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./ |
|
``` |
|
|
|
## Examples |
|
|
|
### How to load pre-trained model for Masked Language Modeling |
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t') |
|
model = AutoModel.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t', trust_remote_code=True) |
|
|
|
``` |
|
|
|
### How to load pre-trained model to fine-tune it on classification task |
|
Get model class from GENA-LM repository: |
|
```bash |
|
git clone https://github.com/AIRI-Institute/GENA_LM.git |
|
``` |
|
|
|
```python |
|
from GENA_LM.src.gena_lm.modeling_bert import BertForSequenceClassification |
|
from transformers import AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t') |
|
model = BertForSequenceClassification.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t') |
|
``` |
|
or you can just download [modeling_bert.py](https://github.com/AIRI-Institute/GENA_LM/tree/main/src/gena_lm) and put it close to your code. |
|
|
|
OR you can get model class from HuggingFace AutoModel: |
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
model = AutoModel.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t', trust_remote_code=True) |
|
gena_module_name = model.__class__.__module__ |
|
print(gena_module_name) |
|
import importlib |
|
# available class names: |
|
# - BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction, |
|
# - BertForSequenceClassification, BertForMultipleChoice, BertForTokenClassification, |
|
# - BertForQuestionAnswering |
|
# check https://huggingface.co/docs/transformers/model_doc/bert |
|
cls = getattr(importlib.import_module(gena_module_name), 'BertForSequenceClassification') |
|
print(cls) |
|
model = cls.from_pretrained('AIRI-Institute/gena-lm-bigbird-base-sparse-t2t', num_labels=2) |
|
``` |
|
|
|
## Model description |
|
GENA-LM (`gena-lm-bigbird-base-sparse-t2t`) model is trained in a masked language model (MLM) fashion, following the methods proposed in the BigBird paper by masking 15% of tokens. Model config for `gena-lm-bigbird-base-sparse-t2t` is similar to the `google/bigbird-roberta-base`: |
|
|
|
- 4096 Maximum sequence length |
|
- 12 Layers, 12 Attention heads |
|
- 768 Hidden size |
|
- sparse config: |
|
- block size: 64 |
|
- random blocks: 3 |
|
- global blocks: 2 |
|
- sliding window blocks: 3 |
|
- Rotary positional embeddings |
|
- 32k Vocabulary size, tokenizer trained on DNA data. |
|
|
|
We pre-trained `gena-lm-bigbird-base-sparse-t2t` using the latest T2T human genome assembly (https://www.ncbi.nlm.nih.gov/assembly/GCA_009914755.3/). The data was augmented by sampling mutations from 1000-genome SNPs (gnomAD dataset). Pre-training was performed for 800,000 iterations with batch size 256. We modified Transformer with [Pre-Layer normalization](https://arxiv.org/abs/2002.04745). |
|
|
|
## Evaluation |
|
For evaluation results, see our paper: https://academic.oup.com/nar/article/53/2/gkae1310/7954523 |
|
|
|
## Citation |
|
```bibtex |
|
@article{GENA_LM, |
|
author = {Fishman, Veniamin and Kuratov, Yuri and Shmelev, Aleksei and Petrov, Maxim and Penzar, Dmitry and Shepelin, Denis and Chekanov, Nikolay and Kardymon, Olga and Burtsev, Mikhail}, |
|
title = {GENA-LM: a family of open-source foundational DNA language models for long sequences}, |
|
journal = {Nucleic Acids Research}, |
|
volume = {53}, |
|
number = {2}, |
|
pages = {gkae1310}, |
|
year = {2025}, |
|
month = {01}, |
|
issn = {0305-1048}, |
|
doi = {10.1093/nar/gkae1310}, |
|
url = {https://doi.org/10.1093/nar/gkae1310}, |
|
eprint = {https://academic.oup.com/nar/article-pdf/53/2/gkae1310/61443229/gkae1310.pdf}, |
|
} |
|
``` |