|
--- |
|
license: cc-by-nc-4.0 |
|
datasets: |
|
- APauli/Persuasive-Pairs |
|
language: |
|
- en |
|
pipeline_tag: sentence-similarity |
|
--- |
|
# Model to score relative persuasive language between pairs |
|
More info about training, evaluation, and use in paper is here: https://arxiv.org/abs/2406.17753 |
|
|
|
Python: |
|
```python |
|
from transformers import AutoModelForSequenceClassification,AutoTokenizer |
|
import torch |
|
modelname='APauli/Persuasive_language_in_pairs' |
|
model = AutoModelForSequenceClassification.from_pretrained(modelname) |
|
tokenizer = AutoTokenizer.from_pretrained(modelname) |
|
|
|
def predict(textA, textB, model,tokenizer): |
|
encoded_input = tokenizer(textA, textB, padding=True, truncation=True,max_length=256, return_tensors="pt") |
|
with torch.no_grad(): |
|
logits = model(**encoded_input).logits |
|
score1=logits.detach().cpu().numpy() |
|
#flipped |
|
encoded_input = tokenizer(textB, textA, padding=True, truncation=True,max_length=256, return_tensors="pt") |
|
with torch.no_grad(): |
|
logits = model(**encoded_input).logits |
|
score2=logits.detach().cpu().numpy()*(-1) |
|
score = (score1+score2)/2 |
|
return score |
|
``` |
|
|
|
## Citation |
|
|
|
If you find our dataset helpful, kindly refer to us in your work using the following citation: |
|
``` |
|
@misc{pauli2024measuringbenchmarkinglargelanguage, |
|
title={Measuring and Benchmarking Large Language Models' Capabilities to Generate Persuasive Language}, |
|
author={Amalie Brogaard Pauli and Isabelle Augenstein and Ira Assent}, |
|
year={2024}, |
|
eprint={2406.17753}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2406.17753}, |
|
} |
|
``` |