bert-base-multilingual-cased-finetuned-yiddish-experiment-4

This model is a fine-tuned version of bert-base-multilingual-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
8.5841 0.4728 100 2.6105
1.9725 0.9456 200 1.6720
1.535 1.4161 300 1.5957
1.4496 1.8889 400 1.5590
1.3806 2.3593 500 1.4973
1.3533 2.8322 600 1.4804
1.3 3.3026 700 1.4363
1.3135 3.7754 800 1.4593
1.2523 4.2459 900 1.4570
1.255 4.7187 1000 1.4659
1.2291 5.1891 1100 1.4127
1.2041 5.6619 1200 1.4866
1.1898 6.1324 1300 1.4525
1.1729 6.6052 1400 1.4438
1.1742 7.0757 1500 1.4242
1.1645 7.5485 1600 1.4479
1.1165 8.0189 1700 1.4881
1.1283 8.4917 1800 1.4369
1.1334 8.9645 1900 1.4631
1.1081 9.4350 2000 1.4551
1.1344 9.9078 2100 1.4553

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
3
Safetensors
Model size
178M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Addaci/bert-base-multilingual-cased-finetuned-yiddish-experiment-4

Finetuned
(583)
this model