SentenceTransformer based on BAAI/bge-small-en-v1.5

This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: BAAI/bge-small-en-v1.5
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Adi-0-0-Gupta/Embedding")
# Run inference
sentences = [
    'No recipes found with these red onion and cubed stuffing!',
    'What culinary preparations can be made with red onion and cubed stuffing?',
    'Can you provide meal suggestions involving vanilla extract and brown lentil/black masoor dal?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.9819
cosine_accuracy@3 0.9976
cosine_accuracy@5 0.9996
cosine_accuracy@10 1.0
cosine_precision@1 0.9819
cosine_precision@3 0.3325
cosine_precision@5 0.1999
cosine_precision@10 0.1
cosine_recall@1 0.9819
cosine_recall@3 0.9976
cosine_recall@5 0.9996
cosine_recall@10 1.0
cosine_ndcg@10 0.9924
cosine_mrr@10 0.9898
cosine_map@100 0.9898

Information Retrieval

Metric Value
cosine_accuracy@1 0.9812
cosine_accuracy@3 0.9975
cosine_accuracy@5 0.9999
cosine_accuracy@10 1.0
cosine_precision@1 0.9812
cosine_precision@3 0.3325
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.9812
cosine_recall@3 0.9975
cosine_recall@5 0.9999
cosine_recall@10 1.0
cosine_ndcg@10 0.9921
cosine_mrr@10 0.9894
cosine_map@100 0.9894

Information Retrieval

Metric Value
cosine_accuracy@1 0.9796
cosine_accuracy@3 0.997
cosine_accuracy@5 0.9999
cosine_accuracy@10 1.0
cosine_precision@1 0.9796
cosine_precision@3 0.3323
cosine_precision@5 0.2
cosine_precision@10 0.1
cosine_recall@1 0.9796
cosine_recall@3 0.997
cosine_recall@5 0.9999
cosine_recall@10 1.0
cosine_ndcg@10 0.9913
cosine_mrr@10 0.9883
cosine_map@100 0.9883

Information Retrieval

Metric Value
cosine_accuracy@1 0.9817
cosine_accuracy@3 0.9969
cosine_accuracy@5 0.9997
cosine_accuracy@10 1.0
cosine_precision@1 0.9817
cosine_precision@3 0.3323
cosine_precision@5 0.1999
cosine_precision@10 0.1
cosine_recall@1 0.9817
cosine_recall@3 0.9969
cosine_recall@5 0.9997
cosine_recall@10 1.0
cosine_ndcg@10 0.992
cosine_mrr@10 0.9893
cosine_map@100 0.9893

Training Details

Training Dataset

Unnamed Dataset

  • Size: 60,323 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 11 tokens
    • mean: 21.41 tokens
    • max: 503 tokens
    • min: 10 tokens
    • mean: 16.8 tokens
    • max: 31 tokens
  • Samples:
    positive anchor
    No recipes found with these indian cottage cheese (paneer) and bitter melon! What are some culinary options with indian cottage cheese (paneer) and bitter melon?
    No recipes found with these curry leaf and rice cakes! What recipes can be made using curry leaf and rice cakes?
    No recipes found with these bacon and rosemary! What are the different culinary recipes that use bacon and rosemary?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            384,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • gradient_accumulation_steps: 8
  • learning_rate: 2e-05
  • num_train_epochs: 10
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 64
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_128_cosine_map@100 dim_256_cosine_map@100 dim_384_cosine_map@100 dim_64_cosine_map@100
0.0848 10 3.9258 - - - -
0.1697 20 3.0513 - - - -
0.2545 30 1.6368 - - - -
0.3393 40 0.5491 - - - -
0.4242 50 0.1541 - - - -
0.5090 60 0.0615 - - - -
0.5938 70 0.0426 - - - -
0.6787 80 0.037 - - - -
0.7635 90 0.0312 - - - -
0.8484 100 0.0246 - - - -
0.9332 110 0.029 - - - -
0.9926 117 - 0.9855 0.9869 0.9869 0.9855
1.0180 120 0.0205 - - - -
1.1029 130 0.0212 - - - -
1.1877 140 0.0196 - - - -
1.2725 150 0.0157 - - - -
1.3574 160 0.0174 - - - -
1.4422 170 0.0152 - - - -
1.5270 180 0.0155 - - - -
1.6119 190 0.0133 - - - -
1.6967 200 0.0173 - - - -
1.7815 210 0.014 - - - -
1.8664 220 0.0127 - - - -
1.9512 230 0.0116 - - - -
1.9936 235 - 0.9883 0.9894 0.9898 0.9893

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.31.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
30
Safetensors
Model size
33.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Adi-0-0-Gupta/Embedding-v0

Finetuned
(137)
this model

Evaluation results