Adrienziwo's picture
End of training
02e5ecc verified
metadata
library_name: transformers
language:
  - ar
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - zw
metrics:
  - wer
model-index:
  - name: whisper-large-zwksa
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: zwksa
          type: zw
          config: ar
          split: test
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 33.97781939701076

whisper-large-zwksa

This model is a fine-tuned version of openai/whisper-large-v3 on the zwksa dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2123
  • Wer: 33.9778

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1846 0.4119 1000 0.2726 37.3784
0.159 0.8239 2000 0.2398 35.0722
0.1049 1.2358 3000 0.2214 33.1571
0.0751 1.6478 4000 0.2123 33.9778

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.3.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1