Output_llama2_70-15-15
This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6250
- Balanced Accuracy: 0.6326
- Accuracy: 0.6282
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Balanced Accuracy | Accuracy |
---|---|---|---|---|---|
No log | 1.0 | 46 | 0.7111 | 0.5764 | 0.5641 |
No log | 2.0 | 92 | 0.7043 | 0.5656 | 0.5577 |
No log | 3.0 | 138 | 0.6619 | 0.5142 | 0.5192 |
No log | 4.0 | 184 | 0.7013 | 0.5595 | 0.5513 |
No log | 5.0 | 230 | 0.6493 | 0.5620 | 0.5577 |
No log | 6.0 | 276 | 0.6496 | 0.5671 | 0.5641 |
No log | 7.0 | 322 | 0.6466 | 0.5798 | 0.5769 |
No log | 8.0 | 368 | 0.6748 | 0.5527 | 0.5513 |
No log | 9.0 | 414 | 0.6551 | 0.5692 | 0.5705 |
No log | 10.0 | 460 | 0.6205 | 0.6063 | 0.5833 |
0.6541 | 11.0 | 506 | 0.6537 | 0.6020 | 0.6026 |
0.6541 | 12.0 | 552 | 0.6379 | 0.6167 | 0.6154 |
0.6541 | 13.0 | 598 | 0.6243 | 0.6107 | 0.6026 |
0.6541 | 14.0 | 644 | 0.6248 | 0.6074 | 0.6026 |
0.6541 | 15.0 | 690 | 0.6172 | 0.6370 | 0.6218 |
0.6541 | 16.0 | 736 | 0.6237 | 0.6202 | 0.6154 |
0.6541 | 17.0 | 782 | 0.6308 | 0.6230 | 0.6218 |
0.6541 | 18.0 | 828 | 0.6179 | 0.6319 | 0.6218 |
0.6541 | 19.0 | 874 | 0.6252 | 0.6326 | 0.6282 |
0.6541 | 20.0 | 920 | 0.6250 | 0.6326 | 0.6282 |
Framework versions
- PEFT 0.10.0
- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 3.2.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for Ahatsham/Output_llama2_70-15-15
Base model
meta-llama/Meta-Llama-3-8B