Output_llama2_70-15-15

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6250
  • Balanced Accuracy: 0.6326
  • Accuracy: 0.6282

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Balanced Accuracy Accuracy
No log 1.0 46 0.7111 0.5764 0.5641
No log 2.0 92 0.7043 0.5656 0.5577
No log 3.0 138 0.6619 0.5142 0.5192
No log 4.0 184 0.7013 0.5595 0.5513
No log 5.0 230 0.6493 0.5620 0.5577
No log 6.0 276 0.6496 0.5671 0.5641
No log 7.0 322 0.6466 0.5798 0.5769
No log 8.0 368 0.6748 0.5527 0.5513
No log 9.0 414 0.6551 0.5692 0.5705
No log 10.0 460 0.6205 0.6063 0.5833
0.6541 11.0 506 0.6537 0.6020 0.6026
0.6541 12.0 552 0.6379 0.6167 0.6154
0.6541 13.0 598 0.6243 0.6107 0.6026
0.6541 14.0 644 0.6248 0.6074 0.6026
0.6541 15.0 690 0.6172 0.6370 0.6218
0.6541 16.0 736 0.6237 0.6202 0.6154
0.6541 17.0 782 0.6308 0.6230 0.6218
0.6541 18.0 828 0.6179 0.6319 0.6218
0.6541 19.0 874 0.6252 0.6326 0.6282
0.6541 20.0 920 0.6250 0.6326 0.6282

Framework versions

  • PEFT 0.10.0
  • Transformers 4.41.2
  • Pytorch 2.3.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Ahatsham/Output_llama2_70-15-15

Adapter
(534)
this model